mysql5/mysql-5.7.27/storage/ndb/test/ndbapi/testPartitioning.cpp

1398 lines
38 KiB
C++

/*
Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <NDBT_Test.hpp>
#include <NDBT_ReturnCodes.h>
#include <HugoTransactions.hpp>
#include <UtilTransactions.hpp>
#include <NdbRestarter.hpp>
static Uint32 max_dks = 0;
static const Uint32 MAX_FRAGS=48 * 8 * 4; // e.g. 48 nodes, 8 frags/node, 4 replicas
static Uint32 frag_ng_mappings[MAX_FRAGS];
static const char* DistTabName= "DistTest";
static const char* DistTabDKeyCol= "DKey";
static const char* DistTabPKey2Col= "PKey2";
static const char* DistTabResultCol= "Result";
static const char* DistIdxName= "ResultIndex";
static
int
run_drop_table(NDBT_Context* ctx, NDBT_Step* step)
{
NdbDictionary::Dictionary* dict = GETNDB(step)->getDictionary();
dict->dropTable(ctx->getTab()->getName());
return 0;
}
static
int
setNativePartitioning(Ndb* ndb, NdbDictionary::Table& tab, int when, void* arg)
{
switch(when){
case 0: // Before
break;
case 1: // After
return 0;
default:
return 0;
}
/* Use rand to choose one of the native partitioning schemes */
const Uint32 rType= rand() % 3;
Uint32 fragType= -1;
switch(rType)
{
case 0 :
fragType = NdbDictionary::Object::DistrKeyHash;
break;
case 1 :
fragType = NdbDictionary::Object::DistrKeyLin;
break;
case 2:
fragType = NdbDictionary::Object::HashMapPartition;
break;
}
ndbout << "Setting fragment type to " << fragType << endl;
tab.setFragmentType((NdbDictionary::Object::FragmentType)fragType);
return 0;
}
static
int
add_distribution_key(Ndb* ndb, NdbDictionary::Table& tab, int when, void* arg)
{
switch(when){
case 0: // Before
break;
case 1: // After
return 0;
default:
return 0;
}
/* Choose a partitioning type */
setNativePartitioning(ndb, tab, when, arg);
int keys = tab.getNoOfPrimaryKeys();
Uint32 dks = (2 * keys + 2) / 3; dks = (dks > max_dks ? max_dks : dks);
for(int i = 0; i<tab.getNoOfColumns(); i++)
if(tab.getColumn(i)->getPrimaryKey() &&
tab.getColumn(i)->getCharset() != 0)
keys--;
Uint32 max = NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY - tab.getNoOfPrimaryKeys();
if(max_dks < max)
max = max_dks;
if(keys <= 1 && max > 0)
{
dks = 1 + (rand() % max);
ndbout_c("%s pks: %d dks: %d", tab.getName(), keys, dks);
while(dks--)
{
NdbDictionary::Column col;
BaseString name;
name.assfmt("PK_DK_%d", dks);
col.setName(name.c_str());
if((rand() % 100) > 50)
{
col.setType(NdbDictionary::Column::Unsigned);
col.setLength(1);
}
else
{
col.setType(NdbDictionary::Column::Varbinary);
col.setLength(1+(rand() % 25));
}
col.setNullable(false);
col.setPrimaryKey(true);
col.setDistributionKey(true);
tab.addColumn(col);
}
}
else
{
for(int i = 0; i<tab.getNoOfColumns(); i++)
{
NdbDictionary::Column* col = tab.getColumn(i);
if(col->getPrimaryKey() && col->getCharset() == 0)
{
if((int)dks >= keys || (rand() % 100) > 50)
{
col->setDistributionKey(true);
dks--;
}
keys--;
}
}
}
ndbout << (NDBT_Table&)tab << endl;
return 0;
}
static
int
setupUDPartitioning(Ndb* ndb, NdbDictionary::Table& tab)
{
/* Following should really be taken from running test system : */
const Uint32 numNodes= ndb->get_ndb_cluster_connection().no_db_nodes();
const Uint32 numReplicas= 2; // Assumption
const Uint32 guessNumNgs= numNodes/2;
const Uint32 numNgs= guessNumNgs?guessNumNgs : 1;
const Uint32 numFragsPerNode= 2 + (rand() % 3);
const Uint32 numPartitions= numReplicas * numNgs * numFragsPerNode;
tab.setFragmentType(NdbDictionary::Table::UserDefined);
tab.setFragmentCount(numPartitions);
for (Uint32 i=0; i<numPartitions; i++)
{
frag_ng_mappings[i]= i % numNgs;
}
tab.setFragmentData(frag_ng_mappings, numPartitions);
return 0;
}
static
int
setUserDefPartitioning(Ndb* ndb, NdbDictionary::Table& tab, int when, void* arg)
{
switch(when){
case 0: // Before
break;
case 1: // After
return 0;
default:
return 0;
}
setupUDPartitioning(ndb, tab);
ndbout << (NDBT_Table&)tab << endl;
return 0;
}
static
int
one_distribution_key(Ndb* ndb, NdbDictionary::Table& tab, int when, void* arg)
{
switch(when){
case 0: // Before
break;
case 1: // After
return 0;
default:
return 0;
}
setNativePartitioning(ndb, tab, when, arg);
int keys = tab.getNoOfPrimaryKeys();
int dist_key_no = rand()% keys;
for(int i = 0; i<tab.getNoOfColumns(); i++)
{
if(tab.getColumn(i)->getPrimaryKey())
{
if (dist_key_no-- == 0)
{
tab.getColumn(i)->setDistributionKey(true);
}
else
{
tab.getColumn(i)->setDistributionKey(false);
}
}
}
ndbout << (NDBT_Table&)tab << endl;
return 0;
}
static
const NdbDictionary::Table*
create_dist_table(Ndb* pNdb,
bool userDefined)
{
NdbDictionary::Dictionary* dict= pNdb->getDictionary();
do {
NdbDictionary::Table tab;
tab.setName(DistTabName);
if (userDefined)
{
setupUDPartitioning(pNdb, tab);
}
else
{
setNativePartitioning(pNdb, tab, 0, 0);
}
NdbDictionary::Column dk;
dk.setName(DistTabDKeyCol);
dk.setType(NdbDictionary::Column::Unsigned);
dk.setLength(1);
dk.setNullable(false);
dk.setPrimaryKey(true);
dk.setPartitionKey(true);
tab.addColumn(dk);
NdbDictionary::Column pk2;
pk2.setName(DistTabPKey2Col);
pk2.setType(NdbDictionary::Column::Unsigned);
pk2.setLength(1);
pk2.setNullable(false);
pk2.setPrimaryKey(true);
pk2.setPartitionKey(false);
tab.addColumn(pk2);
NdbDictionary::Column result;
result.setName(DistTabResultCol);
result.setType(NdbDictionary::Column::Unsigned);
result.setLength(1);
result.setNullable(true);
result.setPrimaryKey(false);
tab.addColumn(result);
dict->dropTable(tab.getName());
if(dict->createTable(tab) == 0)
{
ndbout << (NDBT_Table&)tab << endl;
do {
/* Primary key index */
NdbDictionary::Index idx;
idx.setType(NdbDictionary::Index::OrderedIndex);
idx.setLogging(false);
idx.setTable(DistTabName);
idx.setName("PRIMARY");
idx.addColumnName(DistTabDKeyCol);
idx.addColumnName(DistTabPKey2Col);
dict->dropIndex("PRIMARY",
tab.getName());
if (dict->createIndex(idx) == 0)
{
ndbout << "Primary Index created successfully" << endl;
break;
}
ndbout << "Primary Index create failed with " <<
dict->getNdbError().code <<
" retrying " << endl;
} while (0);
do {
/* Now the index on the result column */
NdbDictionary::Index idx;
idx.setType(NdbDictionary::Index::OrderedIndex);
idx.setLogging(false);
idx.setTable(DistTabName);
idx.setName(DistIdxName);
idx.addColumnName(DistTabResultCol);
dict->dropIndex(idx.getName(),
tab.getName());
if (dict->createIndex(idx) == 0)
{
ndbout << "Index on Result created successfully" << endl;
return dict->getTable(tab.getName());
}
ndbout << "Index create failed with " <<
dict->getNdbError().code << endl;
} while (0);
}
} while (0);
return 0;
};
static int
run_create_table(NDBT_Context* ctx, NDBT_Step* step)
{
/* Create table, optionally with extra distribution keys
* or UserDefined partitioning
*/
max_dks = ctx->getProperty("distributionkey", (unsigned)0);
bool userDefined = ctx->getProperty("UserDefined", (unsigned) 0);
if(NDBT_Tables::createTable(GETNDB(step),
ctx->getTab()->getName(),
false, false,
max_dks?
add_distribution_key:
userDefined?
setUserDefPartitioning :
setNativePartitioning) == NDBT_OK)
{
return NDBT_OK;
}
if(GETNDB(step)->getDictionary()->getNdbError().code == 745)
return NDBT_OK;
return NDBT_FAILED;
}
static int
run_create_table_smart_scan(NDBT_Context* ctx, NDBT_Step* step)
{
if(NDBT_Tables::createTable(GETNDB(step),
ctx->getTab()->getName(),
false, false,
one_distribution_key) == NDBT_OK)
{
return NDBT_OK;
}
if(GETNDB(step)->getDictionary()->getNdbError().code == 745)
return NDBT_OK;
return NDBT_FAILED;
}
static int
run_create_pk_index(NDBT_Context* ctx, NDBT_Step* step){
bool orderedIndex = ctx->getProperty("OrderedIndex", (unsigned)0);
Ndb* pNdb = GETNDB(step);
const NdbDictionary::Table *pTab =
pNdb->getDictionary()->getTable(ctx->getTab()->getName());
if(!pTab)
return NDBT_OK;
bool logged = ctx->getProperty("LoggedIndexes", orderedIndex ? 0 : 1);
BaseString name;
name.assfmt("IND_%s_PK_%c", pTab->getName(), orderedIndex ? 'O' : 'U');
// Create index
if (orderedIndex)
ndbout << "Creating " << ((logged)?"logged ": "temporary ") << "ordered index "
<< name.c_str() << " (";
else
ndbout << "Creating " << ((logged)?"logged ": "temporary ") << "unique index "
<< name.c_str() << " (";
NdbDictionary::Index pIdx(name.c_str());
pIdx.setTable(pTab->getName());
if (orderedIndex)
pIdx.setType(NdbDictionary::Index::OrderedIndex);
else
pIdx.setType(NdbDictionary::Index::UniqueHashIndex);
for (int c = 0; c< pTab->getNoOfColumns(); c++){
const NdbDictionary::Column * col = pTab->getColumn(c);
if(col->getPrimaryKey()){
pIdx.addIndexColumn(col->getName());
ndbout << col->getName() <<" ";
}
}
pIdx.setStoredIndex(logged);
ndbout << ") ";
if (pNdb->getDictionary()->createIndex(pIdx) != 0){
ndbout << "FAILED!" << endl;
const NdbError err = pNdb->getDictionary()->getNdbError();
NDB_ERR(err);
return NDBT_FAILED;
}
ndbout << "OK!" << endl;
return NDBT_OK;
}
static int run_create_pk_index_drop(NDBT_Context* ctx, NDBT_Step* step){
bool orderedIndex = ctx->getProperty("OrderedIndex", (unsigned)0);
Ndb* pNdb = GETNDB(step);
const NdbDictionary::Table *pTab =
pNdb->getDictionary()->getTable(ctx->getTab()->getName());
if(!pTab)
return NDBT_OK;
BaseString name;
name.assfmt("IND_%s_PK_%c", pTab->getName(), orderedIndex ? 'O' : 'U');
ndbout << "Dropping index " << name.c_str() << " ";
if (pNdb->getDictionary()->dropIndex(name.c_str(), pTab->getName()) != 0){
ndbout << "FAILED!" << endl;
NDB_ERR(pNdb->getDictionary()->getNdbError());
return NDBT_FAILED;
} else {
ndbout << "OK!" << endl;
}
return NDBT_OK;
}
static int
run_create_dist_table(NDBT_Context* ctx, NDBT_Step* step)
{
bool userDefined = ctx->getProperty("UserDefined", (unsigned)0);
if(create_dist_table(GETNDB(step),
userDefined))
return NDBT_OK;
return NDBT_FAILED;
}
static int
run_drop_dist_table(NDBT_Context* ctx, NDBT_Step* step)
{
GETNDB(step)->getDictionary()->dropTable(DistTabName);
return NDBT_OK;
}
static int
run_tests(Ndb* p_ndb, HugoTransactions& hugoTrans, int records, Uint32 batchSize = 1)
{
if (hugoTrans.loadTable(p_ndb, records, batchSize) != 0)
{
return NDBT_FAILED;
}
if(hugoTrans.pkReadRecords(p_ndb, records, batchSize) != 0)
{
return NDBT_FAILED;
}
if(hugoTrans.pkUpdateRecords(p_ndb, records, batchSize) != 0)
{
return NDBT_FAILED;
}
if(hugoTrans.pkDelRecords(p_ndb, records, batchSize) != 0)
{
return NDBT_FAILED;
}
if (hugoTrans.loadTable(p_ndb, records, batchSize) != 0)
{
return NDBT_FAILED;
}
if(hugoTrans.scanUpdateRecords(p_ndb, records) != 0)
{
return NDBT_FAILED;
}
Uint32 abort = 23;
for(Uint32 j = 0; j<5; j++){
Uint32 parallelism = (j == 1 ? 1 : j * 3);
ndbout_c("parallelism: %d", parallelism);
if (hugoTrans.scanReadRecords(p_ndb, records, abort, parallelism,
NdbOperation::LM_Read) != 0)
{
return NDBT_FAILED;
}
if (hugoTrans.scanReadRecords(p_ndb, records, abort, parallelism,
NdbOperation::LM_Exclusive) != 0)
{
return NDBT_FAILED;
}
if (hugoTrans.scanReadRecords(p_ndb, records, abort, parallelism,
NdbOperation::LM_CommittedRead) != 0)
{
return NDBT_FAILED;
}
}
if(hugoTrans.clearTable(p_ndb, records) != 0)
{
return NDBT_FAILED;
}
return 0;
}
static int
run_pk_dk(NDBT_Context* ctx, NDBT_Step* step)
{
Ndb* p_ndb = GETNDB(step);
int records = ctx->getNumRecords();
const NdbDictionary::Table *tab =
p_ndb->getDictionary()->getTable(ctx->getTab()->getName());
if(!tab)
return NDBT_OK;
HugoTransactions hugoTrans(*tab);
Uint32 batchSize= ctx->getProperty("BatchSize", (unsigned) 1);
return run_tests(p_ndb, hugoTrans, records, batchSize);
}
int
run_index_dk(NDBT_Context* ctx, NDBT_Step* step)
{
Ndb* p_ndb = GETNDB(step);
int records = ctx->getNumRecords();
const NdbDictionary::Table *pTab =
p_ndb->getDictionary()->getTable(ctx->getTab()->getName());
if(!pTab)
return NDBT_OK;
bool orderedIndex = ctx->getProperty("OrderedIndex", (unsigned)0);
BaseString name;
name.assfmt("IND_%s_PK_%c", pTab->getName(), orderedIndex ? 'O' : 'U');
const NdbDictionary::Index * idx =
p_ndb->getDictionary()->getIndex(name.c_str(), pTab->getName());
if(!idx)
{
ndbout << "Failed to retreive index: " << name.c_str() << endl;
return NDBT_FAILED;
}
Uint32 batchSize= ctx->getProperty("BatchSize", (unsigned) 1);
HugoTransactions hugoTrans(*pTab, idx);
return run_tests(p_ndb, hugoTrans, records, batchSize);
}
static int
run_startHint(NDBT_Context* ctx, NDBT_Step* step)
{
Ndb* p_ndb = GETNDB(step);
int records = ctx->getNumRecords();
const NdbDictionary::Table *tab =
p_ndb->getDictionary()->getTable(ctx->getTab()->getName());
if(!tab)
return NDBT_OK;
HugoTransactions hugoTrans(*tab);
if (hugoTrans.loadTable(p_ndb, records) != 0)
{
return NDBT_FAILED;
}
NdbRestarter restarter;
if(restarter.insertErrorInAllNodes(8050) != 0)
return NDBT_FAILED;
HugoCalculator dummy(*tab);
int result = NDBT_OK;
for(int i = 0; i<records && result == NDBT_OK; i++)
{
char buffer[NDB_MAX_TUPLE_SIZE];
char* start= buffer + (rand() & 7);
char* pos= start;
int k = 0;
Ndb::Key_part_ptr ptrs[NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY+1];
for(int j = 0; j<tab->getNoOfColumns(); j++)
{
if(tab->getColumn(j)->getPartitionKey())
{
//ndbout_c(tab->getColumn(j)->getName());
int sz = tab->getColumn(j)->getSizeInBytes();
Uint32 real_size;
dummy.calcValue(i, j, 0, pos, sz, &real_size);
ptrs[k].ptr = pos;
ptrs[k++].len = real_size;
pos += (real_size + 3) & ~3;
}
}
ptrs[k].ptr = 0;
// Now we have the pk
NdbTransaction* pTrans= p_ndb->startTransaction(tab, ptrs);
HugoOperations ops(*tab);
ops.setTransaction(pTrans);
if(ops.pkReadRecord(p_ndb, i, 1) != NDBT_OK)
{
result = NDBT_FAILED;
break;
}
if(ops.execute_Commit(p_ndb) != 0)
{
result = NDBT_FAILED;
break;
}
ops.closeTransaction(p_ndb);
}
restarter.insertErrorInAllNodes(0);
return result;
}
static int
run_startHint_ordered_index(NDBT_Context* ctx, NDBT_Step* step)
{
Ndb* p_ndb = GETNDB(step);
int records = ctx->getNumRecords();
const NdbDictionary::Table *tab =
p_ndb->getDictionary()->getTable(ctx->getTab()->getName());
if(!tab)
return NDBT_OK;
BaseString name;
name.assfmt("IND_%s_PK_O", tab->getName());
const NdbDictionary::Index * idx =
p_ndb->getDictionary()->getIndex(name.c_str(), tab->getName());
if(!idx)
{
ndbout << "Failed to retreive index: " << name.c_str() << endl;
return NDBT_FAILED;
}
HugoTransactions hugoTrans(*tab, idx);
if (hugoTrans.loadTable(p_ndb, records) != 0)
{
return NDBT_FAILED;
}
NdbRestarter restarter;
if(restarter.insertErrorInAllNodes(8050) != 0)
return NDBT_FAILED;
HugoCalculator dummy(*tab);
int result = NDBT_OK;
for(int i = 0; i<records && result == NDBT_OK; i++)
{
char buffer[NDB_MAX_TUPLE_SIZE];
NdbTransaction* pTrans= NULL;
char* start= buffer + (rand() & 7);
char* pos= start;
int k = 0;
Ndb::Key_part_ptr ptrs[NDB_MAX_NO_OF_ATTRIBUTES_IN_KEY+1];
for(int j = 0; j<tab->getNoOfColumns(); j++)
{
if(tab->getColumn(j)->getPartitionKey())
{
//ndbout_c(tab->getColumn(j)->getName());
int sz = tab->getColumn(j)->getSizeInBytes();
Uint32 real_size;
dummy.calcValue(i, j, 0, pos, sz, &real_size);
ptrs[k].ptr = pos;
ptrs[k++].len = real_size;
pos += (real_size + 3) & ~3;
}
}
ptrs[k].ptr = 0;
// Now we have the pk, start a hinted transaction
pTrans= p_ndb->startTransaction(tab, ptrs);
// Because we pass an Ordered index here, pkReadRecord will
// use an index scan on the Ordered index
HugoOperations ops(*tab, idx);
ops.setTransaction(pTrans);
/* Despite it's name, it will actually perform index scans
* as there is an index.
* Error 8050 will cause an NDBD assertion failure in
* Dbtc::execDIGETPRIMCONF() if TC needs to scan a fragment
* which is not on the TC node
* So for this TC to pass with no failures we need transaction
* hinting and scan partition pruning on equal() to work
* correctly.
* TODO : Get coverage of Index scan which is equal on dist
* key cols, but has an inequality on some other column.
*/
if(ops.pkReadRecord(p_ndb, i, 1) != NDBT_OK)
{
result = NDBT_FAILED;
break;
}
if(ops.execute_Commit(p_ndb) != 0)
{
result = NDBT_FAILED;
break;
}
ops.closeTransaction(p_ndb);
}
restarter.insertErrorInAllNodes(0);
return result;
}
#define CHECK(x, y) {int res= (x); \
if (res != 0) { ndbout << "Assert failed at " \
<< __LINE__ << endl \
<< res << endl \
<< " error : " \
<< (y)->getNdbError().code \
<< endl; \
return NDBT_FAILED; } }
#define CHECKNOTNULL(x, y) { \
if ((x) == NULL) { ndbout << "Assert failed at line " \
<< __LINE__ << endl \
<< " with " \
<< (y)->getNdbError().code \
<< endl; \
return NDBT_FAILED; } }
static int
load_dist_table(Ndb* pNdb, int records, int parts)
{
const NdbDictionary::Table* tab= pNdb->getDictionary()->getTable(DistTabName);
bool userDefined= (tab->getFragmentType() ==
NdbDictionary::Object::UserDefined);
const NdbRecord* distRecord= tab->getDefaultRecord();
CHECKNOTNULL(distRecord, pNdb);
char* buf= (char*) malloc(NdbDictionary::getRecordRowLength(distRecord));
CHECKNOTNULL(buf, pNdb);
/* We insert a number of records with a constrained number of
* values for the distribution key column
*/
for (int r=0; r < records; r++)
{
NdbTransaction* trans= pNdb->startTransaction();
CHECKNOTNULL(trans, pNdb);
{
const int dKeyVal= r % parts;
const Uint32 dKeyAttrid= tab->getColumn(DistTabDKeyCol)->getAttrId();
memcpy(NdbDictionary::getValuePtr(distRecord, buf,
dKeyAttrid),
&dKeyVal, sizeof(dKeyVal));
}
{
const int pKey2Val= r;
const Uint32 pKey2Attrid= tab->getColumn(DistTabPKey2Col)->getAttrId();
memcpy(NdbDictionary::getValuePtr(distRecord, buf,
pKey2Attrid),
&pKey2Val, sizeof(pKey2Val));
}
{
const int resultVal= r*r;
const Uint32 resultValAttrid=
tab->getColumn(DistTabResultCol)->getAttrId();
memcpy(NdbDictionary::getValuePtr(distRecord, buf,
resultValAttrid),
&resultVal, sizeof(resultVal));
// set not NULL
NdbDictionary::setNull(distRecord, buf, resultValAttrid, false);
}
NdbOperation::OperationOptions opts;
opts.optionsPresent= 0;
if (userDefined)
{
/* For user-defined partitioning, we set the partition id
* to be the distribution key value modulo the number
* of partitions in the table
*/
opts.optionsPresent= NdbOperation::OperationOptions::OO_PARTITION_ID;
opts.partitionId= (r%parts) % tab->getFragmentCount();
}
CHECKNOTNULL(trans->insertTuple(distRecord, buf,
NULL, &opts, sizeof(opts)), trans);
if (trans->execute(NdbTransaction::Commit) != 0)
{
NdbError err = trans->getNdbError();
if (err.status == NdbError::TemporaryError)
{
ndbout << err << endl;
NdbSleep_MilliSleep(50);
r--; // just retry
}
else
{
CHECK(-1, trans);
}
}
trans->close();
}
free(buf);
return NDBT_OK;
};
struct PartInfo
{
NdbTransaction* trans;
NdbIndexScanOperation* op;
int dKeyVal;
int valCount;
};
class Ap
{
public:
void* ptr;
Ap(void* _ptr) : ptr(_ptr)
{};
~Ap()
{
if (ptr != 0)
{
free(ptr);
ptr= 0;
}
}
};
static int
dist_scan_body(Ndb* pNdb, int records, int parts, PartInfo* partInfo, bool usePrimary)
{
const NdbDictionary::Table* tab= pNdb->getDictionary()->getTable(DistTabName);
CHECKNOTNULL(tab, pNdb->getDictionary());
const char* indexName= usePrimary ? "PRIMARY" : DistIdxName;
const NdbDictionary::Index* idx= pNdb->getDictionary()->getIndex(indexName,
DistTabName);
CHECKNOTNULL(idx, pNdb->getDictionary());
const NdbRecord* tabRecord= tab->getDefaultRecord();
const NdbRecord* idxRecord= idx->getDefaultRecord();
bool userDefined= (tab->getFragmentType() ==
NdbDictionary::Object::UserDefined);
char* boundBuf= (char*) malloc(NdbDictionary::getRecordRowLength(idx->getDefaultRecord()));
if (usePrimary)
ndbout << "Checking MRR indexscan distribution awareness when distribution key part of bounds" << endl;
else
ndbout << "Checking MRR indexscan distribution awareness when distribution key provided explicitly" << endl;
if (userDefined)
ndbout << "User Defined Partitioning scheme" << endl;
else
ndbout << "Native Partitioning scheme" << endl;
Ap boundAp(boundBuf);
for (int r=0; r < records; r++)
{
int partValue= r % parts;
PartInfo& pInfo= partInfo[partValue];
if (pInfo.trans == NULL)
{
/* Provide the partition key as a hint for this transaction */
if (!userDefined)
{
Ndb::Key_part_ptr keyParts[2];
keyParts[0].ptr= &partValue;
keyParts[0].len= sizeof(partValue);
keyParts[1].ptr= NULL;
keyParts[1].len= 0;
/* To test that bad hinting causes failure, uncomment */
// int badPartVal= partValue+1;
// keyParts[0].ptr= &badPartVal;
CHECKNOTNULL(pInfo.trans= pNdb->startTransaction(tab, keyParts),
pNdb);
}
else
{
/* User Defined partitioning */
Uint32 partId= partValue % tab->getFragmentCount();
CHECKNOTNULL(pInfo.trans= pNdb->startTransaction(tab,
partId),
pNdb);
}
pInfo.valCount= 0;
pInfo.dKeyVal= partValue;
NdbScanOperation::ScanOptions opts;
opts.optionsPresent= NdbScanOperation::ScanOptions::SO_SCANFLAGS;
opts.scan_flags= NdbScanOperation::SF_MultiRange;
// Define the scan operation for this partition.
CHECKNOTNULL(pInfo.op= pInfo.trans->scanIndex(idx->getDefaultRecord(),
tab->getDefaultRecord(),
NdbOperation::LM_Read,
NULL,
NULL,
&opts,
sizeof(opts)),
pInfo.trans);
}
NdbIndexScanOperation* op= pInfo.op;
if (usePrimary)
{
{
int dKeyVal= partValue;
int pKey2Val= r;
/* Scanning the primary index, set bound on the pk */
memcpy(NdbDictionary::getValuePtr(idxRecord,
boundBuf,
tab->getColumn(DistTabDKeyCol)->getAttrId()),
&dKeyVal,
sizeof(dKeyVal));
memcpy(NdbDictionary::getValuePtr(idxRecord,
boundBuf,
tab->getColumn(DistTabPKey2Col)->getAttrId()),
&pKey2Val,
sizeof(pKey2Val));
}
NdbIndexScanOperation::IndexBound ib;
ib.low_key= boundBuf;
ib.low_key_count= 2;
ib.low_inclusive= true;
ib.high_key= ib.low_key;
ib.high_key_count= ib.low_key_count;
ib.high_inclusive= true;
ib.range_no= pInfo.valCount++;
/* No partitioning info for native, PK index scan
* NDBAPI can determine it from PK */
Ndb::PartitionSpec pSpec;
pSpec.type= Ndb::PartitionSpec::PS_NONE;
if (userDefined)
{
/* We'll provide partition info */
pSpec.type= Ndb::PartitionSpec::PS_USER_DEFINED;
pSpec.UserDefined.partitionId= partValue % tab->getFragmentCount();
}
CHECK(op->setBound(idxRecord,
ib,
&pSpec,
sizeof(pSpec)),
op);
}
else
{
Uint32 resultValAttrId= tab->getColumn(DistTabResultCol)->getAttrId();
/* Scanning the secondary index, set bound on the result */
{
int resultVal= r*r;
memcpy(NdbDictionary::getValuePtr(idxRecord,
boundBuf,
resultValAttrId),
&resultVal,
sizeof(resultVal));
}
NdbDictionary::setNull(idxRecord,
boundBuf,
resultValAttrId,
false);
NdbIndexScanOperation::IndexBound ib;
ib.low_key= boundBuf;
ib.low_key_count= 1;
ib.low_inclusive= true;
ib.high_key= ib.low_key;
ib.high_key_count= ib.low_key_count;
ib.high_inclusive= true;
ib.range_no= pInfo.valCount++;
Ndb::Key_part_ptr keyParts[2];
keyParts[0].ptr= &partValue;
keyParts[0].len= sizeof(partValue);
keyParts[1].ptr= NULL;
keyParts[1].len= 0;
/* To test that bad hinting causes failure, uncomment */
//int badPartVal= partValue+1;
//keyParts[0].ptr= &badPartVal;
Ndb::PartitionSpec pSpec;
char* tabRow= NULL;
if (userDefined)
{
/* We'll provide partition info */
pSpec.type= Ndb::PartitionSpec::PS_USER_DEFINED;
pSpec.UserDefined.partitionId= partValue % tab->getFragmentCount();
}
else
{
/* Can set either using an array of Key parts, or a KeyRecord
* structure. Let's test both
*/
if (rand() % 2)
{
//ndbout << "Using Key Parts to set range partition info" << endl;
pSpec.type= Ndb::PartitionSpec::PS_DISTR_KEY_PART_PTR;
pSpec.KeyPartPtr.tableKeyParts= keyParts;
pSpec.KeyPartPtr.xfrmbuf= NULL;
pSpec.KeyPartPtr.xfrmbuflen= 0;
}
else
{
//ndbout << "Using KeyRecord to set range partition info" << endl;
/* Setup a row in NdbRecord format with the distkey value set */
tabRow= (char*)malloc(NdbDictionary::getRecordRowLength(tabRecord));
int& dKeyVal= *((int*) NdbDictionary::getValuePtr(tabRecord,
tabRow,
tab->getColumn(DistTabDKeyCol)->getAttrId()));
dKeyVal= partValue;
// dKeyVal= partValue + 1; // Test failue case
pSpec.type= Ndb::PartitionSpec::PS_DISTR_KEY_RECORD;
pSpec.KeyRecord.keyRecord= tabRecord;
pSpec.KeyRecord.keyRow= tabRow;
pSpec.KeyRecord.xfrmbuf= 0;
pSpec.KeyRecord.xfrmbuflen= 0;
}
}
CHECK(op->setBound(idxRecord,
ib,
&pSpec,
sizeof(pSpec)),
op);
if (tabRow)
free(tabRow);
tabRow= NULL;
}
}
for (int p=0; p < parts; p++)
{
PartInfo& pInfo= partInfo[p];
//ndbout << "D-key val " << p << " has " << pInfo.valCount
// << " ranges specified. " << endl;
//ndbout << "Is Pruned? " << pInfo.op->getPruned() << endl;
if (! pInfo.op->getPruned())
{
ndbout << "MRR Scan Operation should have been pruned, but was not." << endl;
return NDBT_FAILED;
}
CHECK(pInfo.trans->execute(NdbTransaction::NoCommit), pInfo.trans);
int resultCount=0;
const char* resultPtr;
int rc= 0;
while ((rc= pInfo.op->nextResult(&resultPtr, true, true)) == 0)
{
int dKeyVal;
memcpy(&dKeyVal, NdbDictionary::getValuePtr(tabRecord,
resultPtr,
tab->getColumn(DistTabDKeyCol)->getAttrId()),
sizeof(dKeyVal));
int pKey2Val;
memcpy(&pKey2Val, NdbDictionary::getValuePtr(tabRecord,
resultPtr,
tab->getColumn(DistTabPKey2Col)->getAttrId()),
sizeof(pKey2Val));
int resultVal;
memcpy(&resultVal, NdbDictionary::getValuePtr(tabRecord,
resultPtr,
tab->getColumn(DistTabResultCol)->getAttrId()),
sizeof(resultVal));
if ((dKeyVal != pInfo.dKeyVal) ||
(resultVal != (pKey2Val * pKey2Val)))
{
ndbout << "Got bad values. Dkey : " << dKeyVal
<< " Pkey2 : " << pKey2Val
<< " Result : " << resultVal
<< endl;
return NDBT_FAILED;
}
resultCount++;
}
if (rc != 1)
{
ndbout << "Got bad scan rc " << rc << endl;
ndbout << "Error : " << pInfo.op->getNdbError().code << endl;
ndbout << "Trans Error : " << pInfo.trans->getNdbError().code << endl;
return NDBT_FAILED;
}
if (resultCount != pInfo.valCount)
{
ndbout << "Error resultCount was " << resultCount << endl;
return NDBT_FAILED;
}
CHECK(pInfo.trans->execute(NdbTransaction::Commit), pInfo.trans);
pInfo.trans->close();
};
ndbout << "Success" << endl;
return NDBT_OK;
}
static int
dist_scan(Ndb* pNdb, int records, int parts, bool usePk)
{
PartInfo* partInfo= new PartInfo[parts];
NdbRestarter restarter;
if(restarter.insertErrorInAllNodes(8050) != 0)
{
delete[] partInfo;
return NDBT_FAILED;
}
for (int p=0; p<parts; p++)
{
partInfo[p].trans= NULL;
partInfo[p].op= NULL;
partInfo[p].dKeyVal= 0;
partInfo[p].valCount= 0;
}
int result= dist_scan_body(pNdb,
records,
parts,
partInfo,
usePk);
restarter.insertErrorInAllNodes(0);
delete[] partInfo;
return result;
}
static int
run_dist_test(NDBT_Context* ctx, NDBT_Step* step)
{
int records= ctx->getNumRecords();
/* Choose an interesting number of discrete
* distribution key values to work with
*/
int numTabPartitions= GETNDB(step)
->getDictionary()
->getTable(DistTabName)
->getFragmentCount();
int numDkeyValues= 2*numTabPartitions + (rand() % 6);
if (numDkeyValues > records)
{
// limit number of distributions keys to number of records
numDkeyValues = records;
}
ndbout << "Table has " << numTabPartitions
<< " physical partitions" << endl;
ndbout << "Testing with " << numDkeyValues
<< " discrete distribution key values " << endl;
if (load_dist_table(GETNDB(step), records, numDkeyValues) != NDBT_OK)
return NDBT_FAILED;
/* Test access via PK ordered index (including Dkey) */
if (dist_scan(GETNDB(step), records, numDkeyValues, true) != NDBT_OK)
return NDBT_FAILED;
/* Test access via secondary ordered index (not including Dkey) */
if (dist_scan(GETNDB(step), records, numDkeyValues, false) != NDBT_OK)
return NDBT_FAILED;
return NDBT_OK;
}
NDBT_TESTSUITE(testPartitioning);
TESTCASE("pk_dk",
"Primary key operations with distribution key")
{
TC_PROPERTY("distributionkey", ~0);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_pk_dk);
INITIALIZER(run_drop_table);
}
TESTCASE("hash_index_dk",
"Unique index operations with distribution key")
{
TC_PROPERTY("distributionkey", ~0);
TC_PROPERTY("OrderedIndex", (unsigned)0);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_create_pk_index);
INITIALIZER(run_index_dk);
INITIALIZER(run_create_pk_index_drop);
INITIALIZER(run_drop_table);
}
TESTCASE("ordered_index_dk",
"Ordered index operations with distribution key")
{
TC_PROPERTY("distributionkey", (unsigned)1);
TC_PROPERTY("OrderedIndex", (unsigned)1);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_create_pk_index);
INITIALIZER(run_index_dk);
INITIALIZER(run_create_pk_index_drop);
INITIALIZER(run_drop_table);
}
TESTCASE("smart_scan",
"Ordered index operations with distribution key")
{
TC_PROPERTY("OrderedIndex", (unsigned)1);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table_smart_scan);
INITIALIZER(run_create_pk_index);
INITIALIZER(run_index_dk);
INITIALIZER(run_create_pk_index_drop);
INITIALIZER(run_drop_table);
}
TESTCASE("startTransactionHint",
"Test startTransactionHint wo/ distribution key")
{
/* If hint is incorrect, node failure occurs */
TC_PROPERTY("distributionkey", (unsigned)0);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_startHint);
INITIALIZER(run_drop_table);
}
TESTCASE("startTransactionHint_dk",
"Test startTransactionHint with distribution key")
{
/* If hint is incorrect, node failure occurs */
TC_PROPERTY("distributionkey", (unsigned)~0);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_startHint);
INITIALIZER(run_drop_table);
}
TESTCASE("startTransactionHint_orderedIndex",
"Test startTransactionHint and ordered index reads")
{
/* If hint is incorrect, node failure occurs */
TC_PROPERTY("distributionkey", (unsigned)0);
TC_PROPERTY("OrderedIndex", (unsigned)1);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_create_pk_index);
INITIALIZER(run_startHint_ordered_index);
INITIALIZER(run_create_pk_index_drop);
INITIALIZER(run_drop_table);
}
TESTCASE("startTransactionHint_orderedIndex_dk",
"Test startTransactionHint and ordered index reads with distribution key")
{
/* If hint is incorrect, node failure occurs */
TC_PROPERTY("distributionkey", (unsigned)~0);
TC_PROPERTY("OrderedIndex", (unsigned)1);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_create_pk_index);
INITIALIZER(run_startHint_ordered_index);
INITIALIZER(run_create_pk_index_drop);
INITIALIZER(run_drop_table);
}
TESTCASE("startTransactionHint_orderedIndex_mrr_native",
"Test hinting and MRR Ordered Index Scans for native partitioned table")
{
TC_PROPERTY("UserDefined", (unsigned)0);
INITIALIZER(run_create_dist_table);
INITIALIZER(run_dist_test);
INITIALIZER(run_drop_dist_table);
}
TESTCASE("pk_userDefined",
"Test primary key operations on table with user-defined partitioning")
{
/* Check PK ops against user-defined partitioned table */
TC_PROPERTY("UserDefined", (unsigned) 1);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_create_pk_index);
INITIALIZER(run_pk_dk);
INITIALIZER(run_create_pk_index_drop);
INITIALIZER(run_drop_table);
};
TESTCASE("hash_index_userDefined",
"Unique index operations on table with user-defined partitioning")
{
/* Check hash index ops against user-defined partitioned table */
TC_PROPERTY("OrderedIndex", (unsigned)0);
TC_PROPERTY("UserDefined", (unsigned)1);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_create_pk_index);
INITIALIZER(run_index_dk);
INITIALIZER(run_create_pk_index_drop);
INITIALIZER(run_drop_table);
}
TESTCASE("ordered_index_userDefined",
"Ordered index operations on table with user-defined partitioning")
{
/* Check ordered index operations against user-defined partitioned table */
TC_PROPERTY("OrderedIndex", (unsigned)1);
TC_PROPERTY("UserDefined", (unsigned)1);
INITIALIZER(run_drop_table);
INITIALIZER(run_create_table);
INITIALIZER(run_create_pk_index);
INITIALIZER(run_index_dk);
INITIALIZER(run_create_pk_index_drop);
INITIALIZER(run_drop_table);
}
TESTCASE("startTransactionHint_orderedIndex_mrr_userDefined",
"Test hinting and MRR Ordered Index Scans for user defined partitioned table")
{
TC_PROPERTY("UserDefined", (unsigned)1);
INITIALIZER(run_create_dist_table);
INITIALIZER(run_dist_test);
INITIALIZER(run_drop_dist_table);
}
NDBT_TESTSUITE_END(testPartitioning);
int main(int argc, const char** argv){
ndb_init();
NDBT_TESTSUITE_INSTANCE(testPartitioning);
testPartitioning.setCreateTable(false);
return testPartitioning.execute(argc, argv);
}