249 lines
6.2 KiB
C++
249 lines
6.2 KiB
C++
/*
|
|
Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef NDB_TICK_H
|
|
#define NDB_TICK_H
|
|
|
|
#include <assert.h>
|
|
#include <ndb_types.h>
|
|
|
|
|
|
void NdbTick_Init();
|
|
|
|
|
|
/**
|
|
* NDB_TICKS is a high resolution monotonic timer representing
|
|
* timer 'ticks' from some epoch start like boot time, 1/1 -1970 or
|
|
* whatever.
|
|
* Its actual resolution and duration of a 'tick' is platform
|
|
* dependent. Make no assumption about it representing a specific time.
|
|
* Functions are provided to compare ticks and calculate time
|
|
* interval between ticks
|
|
*
|
|
* NOTE: Even if the platform specific implementation of 'ticks'
|
|
* should be in nanoseconds, the 64bit NDB_TICK will not wrap until
|
|
* ~585 years has passed. So it should be pretty safe....
|
|
*/
|
|
typedef struct NDB_TICKS {
|
|
|
|
Uint64 t;
|
|
|
|
public:
|
|
NDB_TICKS()
|
|
{ t = 0; };
|
|
|
|
/**
|
|
* Provide functionality for fetch and reconstruct of tick value.
|
|
* Usefull when a 'tick' is sent as part of a signal, or when
|
|
* the clock is used to generate a pseudo random number.
|
|
*/
|
|
Uint64 getUint64() const
|
|
{ return t; };
|
|
|
|
explicit NDB_TICKS(Uint64 val)
|
|
{ t = val; };
|
|
|
|
} NDB_TICKS;
|
|
|
|
|
|
/**
|
|
* Returns whether the 'ticks' are provided by a monotonic timer.
|
|
* Must be called after NdbTick_Init()
|
|
*/
|
|
bool
|
|
NdbTick_IsMonotonic();
|
|
|
|
/**
|
|
* Returns number of 'ticks' since some
|
|
* platforms dependent epoch start.
|
|
*/
|
|
const NDB_TICKS
|
|
NdbTick_getCurrentTicks(void);
|
|
|
|
/**
|
|
* Add specified number of milliseconds to a 'ticks' value.
|
|
*/
|
|
const NDB_TICKS NdbTick_AddMilliseconds(NDB_TICKS ticks, Uint64 ms);
|
|
|
|
static void NdbTick_Invalidate(NDB_TICKS *ticks);
|
|
static int NdbTick_IsValid(NDB_TICKS ticks);
|
|
|
|
/**
|
|
* Compare ticks and return an integer greater than,
|
|
* equal to, or less than 0, if the 'tick value' in t1
|
|
* is greater than, equal to, or less than the t2 tick
|
|
* respectively.
|
|
*/
|
|
static int NdbTick_Compare(NDB_TICKS t1, NDB_TICKS t2);
|
|
|
|
/**
|
|
* Get time elapsed between start and end time.
|
|
*/
|
|
static const class NdbDuration
|
|
NdbTick_Elapsed(NDB_TICKS start, NDB_TICKS end);
|
|
|
|
/**
|
|
* Returns the current millisecond since some epoch start.
|
|
*
|
|
* Treat this function as deprecated. Elapsed time intervals
|
|
* should be calculated by using the pattern
|
|
* start/end = NdbTick_getCurrentTicks() and
|
|
* elapsed = NdbTick_Elapsed...(start,end).
|
|
*
|
|
* All usage except in test utilties, should be considdered
|
|
* a bug.
|
|
*/
|
|
static Uint64 NdbTick_CurrentMillisecond(void);
|
|
|
|
|
|
class NdbDuration {
|
|
|
|
public:
|
|
Uint64 seconds() const;
|
|
Uint64 milliSec() const;
|
|
Uint64 microSec() const;
|
|
Uint64 nanoSec() const;
|
|
|
|
private:
|
|
Uint64 t;
|
|
static Uint64 tick_frequency;
|
|
|
|
friend const NdbDuration
|
|
NdbTick_Elapsed(NDB_TICKS start, NDB_TICKS end);
|
|
|
|
friend Uint64
|
|
NdbTick_CurrentMillisecond(void);
|
|
|
|
friend const NDB_TICKS
|
|
NdbTick_AddMilliseconds(NDB_TICKS ticks, Uint64 ms);
|
|
|
|
friend void NdbTick_Init();
|
|
|
|
NdbDuration(Uint64 ticks) : t(ticks) {};
|
|
}; //class NdbDuration
|
|
|
|
|
|
/******************************************************
|
|
* Implementation of NdbTick_foo functions.
|
|
******************************************************/
|
|
inline
|
|
void NdbTick_Invalidate(NDB_TICKS *ticks)
|
|
{
|
|
ticks->t = 0;
|
|
}
|
|
|
|
static inline
|
|
int NdbTick_IsValid(NDB_TICKS ticks)
|
|
{
|
|
return(ticks.t != 0);
|
|
}
|
|
|
|
static inline
|
|
int NdbTick_Compare(NDB_TICKS t1, NDB_TICKS t2)
|
|
{
|
|
assert(NdbTick_IsValid(t1));
|
|
assert(NdbTick_IsValid(t2));
|
|
return (t1.t > t2.t) ? 1
|
|
:(t1.t < t2.t) ? -1
|
|
: 0;
|
|
}
|
|
|
|
static inline
|
|
const NdbDuration
|
|
NdbTick_Elapsed(NDB_TICKS start, NDB_TICKS end)
|
|
{
|
|
assert(NdbTick_IsValid(start));
|
|
assert(NdbTick_IsValid(end));
|
|
|
|
if (end.t >= start.t)
|
|
{
|
|
return NdbDuration(end.t - start.t);
|
|
}
|
|
|
|
/**
|
|
* Clock has ticked backwards!
|
|
* We protect agains backward leaping timers by returning 0
|
|
* if detected. This is less harmfull than returning a huge
|
|
* Uint64 which would be the result of that subtraction.
|
|
* Even the monotonic clock is known buggy
|
|
* on some older BIOS and virtualized platforms.
|
|
*/
|
|
else if (NdbTick_IsMonotonic())
|
|
{
|
|
/* Don't accept more than 10ms 'noise' if monotonic */
|
|
assert(NdbDuration(start.t-end.t).milliSec() <= 10);
|
|
}
|
|
|
|
return NdbDuration(0);
|
|
}
|
|
|
|
static inline Uint64
|
|
NdbTick_CurrentMillisecond(void)
|
|
{
|
|
const Uint64 ticks = NdbTick_getCurrentTicks().t;
|
|
if (ticks < (UINT_MAX64 / 1000))
|
|
return ((ticks*1000) / NdbDuration::tick_frequency); // Best precision
|
|
else
|
|
return (ticks / (NdbDuration::tick_frequency/1000)); // Avoids oveflow,
|
|
}
|
|
|
|
/******************************************************
|
|
* Implementation of NdbDuration methods.
|
|
*
|
|
* In order to avoid precision loss, we multiply ticks
|
|
* by the scale factor before dividing by the frequency.
|
|
******************************************************/
|
|
inline
|
|
Uint64 NdbDuration::seconds() const
|
|
{
|
|
return (t / tick_frequency);
|
|
}
|
|
|
|
inline
|
|
Uint64 NdbDuration::milliSec() const
|
|
{
|
|
assert(t < (UINT_MAX64 / 1000)); //Overflow?
|
|
return ((t*1000) / tick_frequency);
|
|
}
|
|
|
|
inline
|
|
Uint64 NdbDuration::microSec() const
|
|
{
|
|
assert(t < (UINT_MAX64 / (1000*1000))); //Overflow?
|
|
return ((t*1000*1000) / tick_frequency);
|
|
}
|
|
|
|
/**
|
|
* If 'tick_frequency' is nanosecs (~2^30), multiplying
|
|
* with 'nanoScale' (2^30) leaves only 4 bits for seconds
|
|
* before we would overflow if calculated as above.
|
|
* Thus we do the nanoSec calculation in an upper and lower
|
|
* Uint64 part which effectively gives 96 bit precision.
|
|
*/
|
|
inline
|
|
Uint64 NdbDuration::nanoSec() const
|
|
{
|
|
static const Uint64 nanoScale = 1000*1000*1000;
|
|
return ((((t >> 32) * nanoScale) / tick_frequency) << 32) +
|
|
(((t & 0xFFFFFFFF) * nanoScale) / tick_frequency);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|