249 lines
6.2 KiB
C++

/*
Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef NDB_TICK_H
#define NDB_TICK_H
#include <assert.h>
#include <ndb_types.h>
void NdbTick_Init();
/**
* NDB_TICKS is a high resolution monotonic timer representing
* timer 'ticks' from some epoch start like boot time, 1/1 -1970 or
* whatever.
* Its actual resolution and duration of a 'tick' is platform
* dependent. Make no assumption about it representing a specific time.
* Functions are provided to compare ticks and calculate time
* interval between ticks
*
* NOTE: Even if the platform specific implementation of 'ticks'
* should be in nanoseconds, the 64bit NDB_TICK will not wrap until
* ~585 years has passed. So it should be pretty safe....
*/
typedef struct NDB_TICKS {
Uint64 t;
public:
NDB_TICKS()
{ t = 0; };
/**
* Provide functionality for fetch and reconstruct of tick value.
* Usefull when a 'tick' is sent as part of a signal, or when
* the clock is used to generate a pseudo random number.
*/
Uint64 getUint64() const
{ return t; };
explicit NDB_TICKS(Uint64 val)
{ t = val; };
} NDB_TICKS;
/**
* Returns whether the 'ticks' are provided by a monotonic timer.
* Must be called after NdbTick_Init()
*/
bool
NdbTick_IsMonotonic();
/**
* Returns number of 'ticks' since some
* platforms dependent epoch start.
*/
const NDB_TICKS
NdbTick_getCurrentTicks(void);
/**
* Add specified number of milliseconds to a 'ticks' value.
*/
const NDB_TICKS NdbTick_AddMilliseconds(NDB_TICKS ticks, Uint64 ms);
static void NdbTick_Invalidate(NDB_TICKS *ticks);
static int NdbTick_IsValid(NDB_TICKS ticks);
/**
* Compare ticks and return an integer greater than,
* equal to, or less than 0, if the 'tick value' in t1
* is greater than, equal to, or less than the t2 tick
* respectively.
*/
static int NdbTick_Compare(NDB_TICKS t1, NDB_TICKS t2);
/**
* Get time elapsed between start and end time.
*/
static const class NdbDuration
NdbTick_Elapsed(NDB_TICKS start, NDB_TICKS end);
/**
* Returns the current millisecond since some epoch start.
*
* Treat this function as deprecated. Elapsed time intervals
* should be calculated by using the pattern
* start/end = NdbTick_getCurrentTicks() and
* elapsed = NdbTick_Elapsed...(start,end).
*
* All usage except in test utilties, should be considdered
* a bug.
*/
static Uint64 NdbTick_CurrentMillisecond(void);
class NdbDuration {
public:
Uint64 seconds() const;
Uint64 milliSec() const;
Uint64 microSec() const;
Uint64 nanoSec() const;
private:
Uint64 t;
static Uint64 tick_frequency;
friend const NdbDuration
NdbTick_Elapsed(NDB_TICKS start, NDB_TICKS end);
friend Uint64
NdbTick_CurrentMillisecond(void);
friend const NDB_TICKS
NdbTick_AddMilliseconds(NDB_TICKS ticks, Uint64 ms);
friend void NdbTick_Init();
NdbDuration(Uint64 ticks) : t(ticks) {};
}; //class NdbDuration
/******************************************************
* Implementation of NdbTick_foo functions.
******************************************************/
inline
void NdbTick_Invalidate(NDB_TICKS *ticks)
{
ticks->t = 0;
}
static inline
int NdbTick_IsValid(NDB_TICKS ticks)
{
return(ticks.t != 0);
}
static inline
int NdbTick_Compare(NDB_TICKS t1, NDB_TICKS t2)
{
assert(NdbTick_IsValid(t1));
assert(NdbTick_IsValid(t2));
return (t1.t > t2.t) ? 1
:(t1.t < t2.t) ? -1
: 0;
}
static inline
const NdbDuration
NdbTick_Elapsed(NDB_TICKS start, NDB_TICKS end)
{
assert(NdbTick_IsValid(start));
assert(NdbTick_IsValid(end));
if (end.t >= start.t)
{
return NdbDuration(end.t - start.t);
}
/**
* Clock has ticked backwards!
* We protect agains backward leaping timers by returning 0
* if detected. This is less harmfull than returning a huge
* Uint64 which would be the result of that subtraction.
* Even the monotonic clock is known buggy
* on some older BIOS and virtualized platforms.
*/
else if (NdbTick_IsMonotonic())
{
/* Don't accept more than 10ms 'noise' if monotonic */
assert(NdbDuration(start.t-end.t).milliSec() <= 10);
}
return NdbDuration(0);
}
static inline Uint64
NdbTick_CurrentMillisecond(void)
{
const Uint64 ticks = NdbTick_getCurrentTicks().t;
if (ticks < (UINT_MAX64 / 1000))
return ((ticks*1000) / NdbDuration::tick_frequency); // Best precision
else
return (ticks / (NdbDuration::tick_frequency/1000)); // Avoids oveflow,
}
/******************************************************
* Implementation of NdbDuration methods.
*
* In order to avoid precision loss, we multiply ticks
* by the scale factor before dividing by the frequency.
******************************************************/
inline
Uint64 NdbDuration::seconds() const
{
return (t / tick_frequency);
}
inline
Uint64 NdbDuration::milliSec() const
{
assert(t < (UINT_MAX64 / 1000)); //Overflow?
return ((t*1000) / tick_frequency);
}
inline
Uint64 NdbDuration::microSec() const
{
assert(t < (UINT_MAX64 / (1000*1000))); //Overflow?
return ((t*1000*1000) / tick_frequency);
}
/**
* If 'tick_frequency' is nanosecs (~2^30), multiplying
* with 'nanoScale' (2^30) leaves only 4 bits for seconds
* before we would overflow if calculated as above.
* Thus we do the nanoSec calculation in an upper and lower
* Uint64 part which effectively gives 96 bit precision.
*/
inline
Uint64 NdbDuration::nanoSec() const
{
static const Uint64 nanoScale = 1000*1000*1000;
return ((((t >> 32) * nanoScale) / tick_frequency) << 32) +
(((t & 0xFFFFFFFF) * nanoScale) / tick_frequency);
}
#endif