504 lines
9.3 KiB
C++

/*
Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef NDB_VECTOR_HPP
#define NDB_VECTOR_HPP
#include <ndb_global.h>
#include <portlib/NdbMutex.h>
template<class T>
class Vector {
public:
Vector(unsigned sz = 10, unsigned inc_sz = 0);
int expand(unsigned sz);
~Vector();
T& operator[](unsigned i);
const T& operator[](unsigned i) const;
unsigned size() const { return m_size; };
int push_back(const T &);
int push(const T&, unsigned pos);
T& set(T&, unsigned pos, T& fill_obj);
T& back();
void erase(unsigned index);
void clear();
int fill(unsigned new_size, T & obj);
Vector<T>& operator=(const Vector<T>&);
/** Does deep copy.*/
Vector(const Vector&);
/**
* Shallow equal (i.e does memcmp)
*/
bool equal(const Vector<T>& obj) const;
int assign(const T*, unsigned cnt);
int assign(const Vector<T>& obj) { return assign(obj.getBase(), obj.size());}
T* getBase() { return m_items;}
const T* getBase() const { return m_items;}
private:
T * m_items;
unsigned m_size;
unsigned m_incSize;
unsigned m_arraySize;
};
/**
* BEWARE: Constructing Vector with initial size > 0 is
* unsafe wrt. catching 'out of memory' errors.
* (C'tor doesn't return error code)
* Instead construct Vector with size==0, and then
* expand() it to the wanted initial size.
*/
template<class T>
Vector<T>::Vector(unsigned sz, unsigned inc_sz):
m_items(NULL),
m_size(0),
m_incSize((inc_sz > 0) ? inc_sz : 50),
m_arraySize(0)
{
if (sz == 0)
return;
m_items = new T[sz];
if (m_items == NULL)
{
errno = ENOMEM;
return;
}
m_arraySize = sz;
}
template<class T>
int
Vector<T>::expand(unsigned sz){
if (sz <= m_size)
return 0;
T * tmp = new T[sz];
if(tmp == NULL)
{
errno = ENOMEM;
return -1;
}
for (unsigned i = 0; i < m_size; i++)
tmp[i] = m_items[i];
delete[] m_items;
m_items = tmp;
m_arraySize = sz;
return 0;
}
/**
* BEWARE: Copy-constructing a Vector is
* unsafe wrt. catching 'out of memory' errors.
* (C'tor doesn't return error code)
* Instead construct empty Vector (size==0),
* and then assign() it the initial contents.
*/
template<class T>
Vector<T>::Vector(const Vector& src):
m_items(NULL),
m_size(0),
m_incSize(src.m_incSize),
m_arraySize(0)
{
const unsigned sz = src.m_size;
if (sz == 0)
return;
m_items = new T[sz];
if (unlikely(m_items == NULL)){
errno = ENOMEM;
return;
}
for(unsigned i = 0; i < sz; i++){
m_items[i] = src.m_items[i];
}
m_arraySize = sz;
m_size = sz;
}
template<class T>
Vector<T>::~Vector(){
delete[] m_items;
// safety for placement new usage
m_items = 0;
m_size = 0;
m_arraySize = 0;
}
template<class T>
T &
Vector<T>::operator[](unsigned i){
if(i >= m_size)
abort();
return m_items[i];
}
template<class T>
const T &
Vector<T>::operator[](unsigned i) const {
if(i >= m_size)
abort();
return m_items[i];
}
template<class T>
T &
Vector<T>::back(){
if(m_size==0)
abort();
return (* this)[m_size - 1];
}
template<class T>
int
Vector<T>::push_back(const T & t){
if(m_size == m_arraySize){
const int err = expand(m_arraySize + m_incSize);
if (unlikely(err))
return err;
}
m_items[m_size] = t;
m_size++;
return 0;
}
template<class T>
int
Vector<T>::push(const T & t, unsigned pos)
{
const int err = push_back(t);
if (unlikely(err))
return err;
if (pos < m_size - 1)
{
for(unsigned i = m_size - 1; i > pos; i--)
{
m_items[i] = m_items[i-1];
}
m_items[pos] = t;
}
return 0;
}
template<class T>
T&
Vector<T>::set(T & t, unsigned pos, T& fill_obj)
{
if (fill(pos, fill_obj))
abort();
T& ret = m_items[pos];
m_items[pos] = t;
return ret;
}
template<class T>
void
Vector<T>::erase(unsigned i){
if(i >= m_size)
abort();
for (unsigned k = i; k + 1 < m_size; k++)
m_items[k] = m_items[k + 1];
m_size--;
}
template<class T>
void
Vector<T>::clear(){
m_size = 0;
}
template<class T>
int
Vector<T>::fill(unsigned new_size, T & obj){
const int err = expand(new_size);
if (unlikely(err))
return err;
while(m_size <= new_size)
if (push_back(obj))
return -1;
return 0;
}
/**
* 'operator=' will 'abort()' on 'out of memory' errors.
* You may prefer using ::assign()' which returns
* an error code instead of aborting.
*/
template<class T>
Vector<T>&
Vector<T>::operator=(const Vector<T>& obj){
if(this != &obj){
clear();
const int err = expand(obj.size());
if (unlikely(err))
abort();
for(unsigned i = 0; i<obj.size(); i++){
if (push_back(obj[i]))
abort();
}
}
return * this;
}
template<class T>
int
Vector<T>::assign(const T* src, unsigned cnt)
{
if (getBase() == src)
return 0; // Self-assign is a NOOP
clear();
const int err = expand(cnt);
if (unlikely(err))
return err;
for (unsigned i = 0; i<cnt; i++)
{
const int err = push_back(src[i]);
if (unlikely(err))
return err;
}
return 0;
}
template<class T>
bool
Vector<T>::equal(const Vector<T>& obj) const
{
if (size() != obj.size())
return false;
return memcmp(getBase(), obj.getBase(), size() * sizeof(T)) == 0;
}
template<class T>
class MutexVector : public NdbLockable {
public:
MutexVector(unsigned sz = 10, unsigned inc_sz = 0);
int expand(unsigned sz);
~MutexVector();
T& operator[](unsigned i);
const T& operator[](unsigned i) const;
unsigned size() const { return m_size; };
int push_back(const T &);
int push_back(const T &, bool lockMutex);
T& back();
void erase(unsigned index);
void erase(unsigned index, bool lockMutex);
void clear();
void clear(bool lockMutex);
int fill(unsigned new_size, T & obj);
private:
// Don't allow copy and assignment of MutexVector
MutexVector(const MutexVector&);
MutexVector<T>& operator=(const MutexVector<T>&);
T * m_items;
unsigned m_size;
unsigned m_incSize;
unsigned m_arraySize;
};
/**
* BEWARE: Constructing MutexVector with initial size > 0 is
* unsafe wrt. catching 'out of memory' errors.
* (C'tor doesn't return error code)
* Instead construct MutexVector with size==0, and then
* expand() it to the wanted initial size.
*/
template<class T>
MutexVector<T>::MutexVector(unsigned sz, unsigned inc_sz):
m_items(NULL),
m_size(0),
m_incSize((inc_sz > 0) ? inc_sz : 50),
m_arraySize(0)
{
if (sz == 0)
return;
m_items = new T[sz];
if (m_items == NULL)
{
errno = ENOMEM;
return;
}
m_arraySize = sz;
}
template<class T>
int
MutexVector<T>::expand(unsigned sz){
if (sz <= m_size)
return 0;
T * tmp = new T[sz];
if(tmp == NULL)
{
errno = ENOMEM;
return -1;
}
for (unsigned i = 0; i < m_size; i++)
tmp[i] = m_items[i];
delete[] m_items;
m_items = tmp;
m_arraySize = sz;
return 0;
}
template<class T>
MutexVector<T>::~MutexVector(){
delete[] m_items;
// safety for placement new usage
m_items = 0;
m_size = 0;
m_arraySize = 0;
}
template<class T>
T &
MutexVector<T>::operator[](unsigned i){
if(i >= m_size)
abort();
return m_items[i];
}
template<class T>
const T &
MutexVector<T>::operator[](unsigned i) const {
if(i >= m_size)
abort();
return m_items[i];
}
template<class T>
T &
MutexVector<T>::back(){
if(m_size==0)
abort();
return (* this)[m_size - 1];
}
template<class T>
int
MutexVector<T>::push_back(const T & t){
lock();
if(m_size == m_arraySize){
const int err = expand(m_arraySize + m_incSize);
if (unlikely(err))
{
unlock();
return err;
}
}
m_items[m_size] = t;
m_size++;
unlock();
return 0;
}
template<class T>
int
MutexVector<T>::push_back(const T & t, bool lockMutex){
if(lockMutex)
lock();
if(m_size == m_arraySize){
const int err = expand(m_arraySize + m_incSize);
if (unlikely(err))
{
if(lockMutex)
unlock();
return err;
}
}
m_items[m_size] = t;
m_size++;
if(lockMutex)
unlock();
return 0;
}
template<class T>
void
MutexVector<T>::erase(unsigned i){
if(i >= m_size)
abort();
lock();
for (unsigned k = i; k + 1 < m_size; k++)
m_items[k] = m_items[k + 1];
m_size--;
unlock();
}
template<class T>
void
MutexVector<T>::erase(unsigned i, bool _lock){
if(i >= m_size)
abort();
if(_lock)
lock();
for (unsigned k = i; k + 1 < m_size; k++)
m_items[k] = m_items[k + 1];
m_size--;
if(_lock)
unlock();
}
template<class T>
void
MutexVector<T>::clear(){
lock();
m_size = 0;
unlock();
}
template<class T>
void
MutexVector<T>::clear(bool l){
if(l) lock();
m_size = 0;
if(l) unlock();
}
template<class T>
int
MutexVector<T>::fill(unsigned new_size, T & obj){
while(m_size <= new_size)
if (push_back(obj))
return -1;
return 0;
}
#endif