2172 lines
56 KiB
C++

/*
Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Restore.hpp"
#include <NdbTCP.h>
#include <NdbMem.h>
#include <OutputStream.hpp>
#include <Bitmask.hpp>
#include <AttributeHeader.hpp>
#include <trigger_definitions.h>
#include <SimpleProperties.hpp>
#include <signaldata/DictTabInfo.hpp>
#include <ndb_limits.h>
#include <NdbAutoPtr.hpp>
#include "../src/ndbapi/NdbDictionaryImpl.hpp"
#include "../../../../sql/ha_ndbcluster_tables.h"
extern NdbRecordPrintFormat g_ndbrecord_print_format;
extern bool ga_skip_unknown_objects;
extern bool ga_skip_broken_objects;
Uint16 Twiddle16(Uint16 in); // Byte shift 16-bit data
Uint32 Twiddle32(Uint32 in); // Byte shift 32-bit data
Uint64 Twiddle64(Uint64 in); // Byte shift 64-bit data
/*
TwiddleUtil
Utility class used when swapping byteorder
of one attribute in a table
*/
class TwiddleUtil {
Uint32 m_twiddle_size;
Uint32 m_twiddle_array_size;
public:
TwiddleUtil(); // Not implemented
TwiddleUtil(const TwiddleUtil&); // Not implemented
TwiddleUtil(const AttributeDesc * const attr_desc) {
const NdbDictionary::Column::Type attribute_type =
attr_desc->m_column->getType();
switch(attribute_type){
case NdbDictionary::Column::Datetime:
// Datetime is stored as 8x8, should be twiddled as 64 bit
assert(attr_desc->size == 8);
assert(attr_desc->arraySize == 8);
m_twiddle_size = 64;
m_twiddle_array_size = 1;
break;
case NdbDictionary::Column::Timestamp:
// Timestamp is stored as 4x8, should be twiddled as 32 bit
assert(attr_desc->size == 8);
assert(attr_desc->arraySize == 4);
m_twiddle_size = 32;
m_twiddle_array_size = 1;
break;
case NdbDictionary::Column::Blob:
case NdbDictionary::Column::Text:
if (attr_desc->m_column->getArrayType() ==
NdbDictionary::Column::ArrayTypeFixed)
{
// Length of fixed size blob which is stored in first 64 bit's
// has to be twiddled, the remaining byte stream left as is
assert(attr_desc->size == 8);
assert(attr_desc->arraySize > 8);
m_twiddle_size = 64;
m_twiddle_array_size = 1;
break;
}
// Fallthrough for blob/text with ArrayTypeVar
default:
// Default twiddling parameters
m_twiddle_size = attr_desc->size;
m_twiddle_array_size = attr_desc->arraySize;
break;
}
assert(m_twiddle_array_size);
assert(m_twiddle_size);
}
bool is_aligned (void* data_ptr) const {
switch (m_twiddle_size){
case 8:
// Always aligned
return true;
break;
case 16:
return ((((size_t)data_ptr) & 1) == 0);
break;
case 32:
return ((((size_t)data_ptr) & 3) == 0);
break;
case 64:
return ((((size_t)data_ptr) & 7) == 0);
break;
default:
abort();
break;
}
return false; // Never reached
}
void twiddle_aligned(void* const data_ptr) const {
// Make sure the data pointer is properly aligned
assert(is_aligned(data_ptr));
switch(m_twiddle_size){
case 8:
// Nothing to swap
break;
case 16:
{
Uint16* ptr = (Uint16*)data_ptr;
for (Uint32 i = 0; i < m_twiddle_array_size; i++){
*ptr = Twiddle16(*ptr);
ptr++;
}
break;
}
case 32:
{
Uint32* ptr = (Uint32*)data_ptr;
for (Uint32 i = 0; i < m_twiddle_array_size; i++){
*ptr = Twiddle32(*ptr);
ptr++;
}
break;
}
case 64:
{
Uint64* ptr = (Uint64*)data_ptr;
for (Uint32 i = 0; i < m_twiddle_array_size; i++){
*ptr = Twiddle64(*ptr);
ptr++;
}
break;
}
default:
abort();
} // switch
}
};
/*
BackupFile::twiddle_attribute
Swap the byte order of one attribute whose data may or may not
be properly aligned for the current datatype
*/
void
BackupFile::twiddle_atribute(const AttributeDesc * const attr_desc,
AttributeData* attr_data)
{
TwiddleUtil map(attr_desc);
// Check if data is aligned properly
void* data_ptr = (char*)attr_data->void_value;
Uint32 data_sz = attr_desc->getSizeInBytes();
bool aligned= map.is_aligned(data_ptr);
if (!aligned)
{
// The pointer is not properly aligned, copy the data
// to aligned memory before twiddling
m_twiddle_buffer.assign(data_ptr, data_sz);
data_ptr = m_twiddle_buffer.get_data();
}
// Swap the byteorder of the aligned data
map.twiddle_aligned(data_ptr);
if (!aligned)
{
// Copy data back from aligned memory
memcpy(attr_data->void_value,
m_twiddle_buffer.get_data(),
data_sz);
}
}
/*
BackupFile::Twiddle
Swap the byteorder for one attribute if it was stored
in different byteorder than current host
*/
bool
BackupFile::Twiddle(const AttributeDesc * const attr_desc,
AttributeData* attr_data)
{
// Check parameters are not NULL
assert(attr_desc);
assert(attr_data);
// Make sure there is data to fiddle with
assert(!attr_data->null);
assert(attr_data->void_value);
if(unlikely(!m_hostByteOrder))
{
// The data file is not in host byte order, the
// attribute need byte order swapped
twiddle_atribute(attr_desc, attr_data);
}
#ifdef VM_TRACE
else
{
// Increase test converage in debug mode by doing
// a double byte order swap to prove that both ways work
twiddle_atribute(attr_desc, attr_data);
twiddle_atribute(attr_desc, attr_data);
}
#endif
return true;
}
FilteredNdbOut err(* new FileOutputStream(stderr), 0, 0);
FilteredNdbOut info(* new FileOutputStream(stdout), 1, 1);
FilteredNdbOut debug(* new FileOutputStream(stdout), 2, 0);
// To decide in what byte order data is
const Uint32 magicByteOrder = 0x12345678;
const Uint32 swappedMagicByteOrder = 0x78563412;
RestoreMetaData::RestoreMetaData(const char* path, Uint32 nodeId, Uint32 bNo) {
debug << "RestoreMetaData constructor" << endl;
setCtlFile(nodeId, bNo, path);
}
RestoreMetaData::~RestoreMetaData(){
for(Uint32 i= 0; i < allTables.size(); i++)
{
TableS *table = allTables[i];
for(Uint32 j= 0; j < table->m_fragmentInfo.size(); j++)
delete table->m_fragmentInfo[j];
delete table;
}
allTables.clear();
}
TableS *
RestoreMetaData::getTable(Uint32 tableId) const {
for(Uint32 i= 0; i < allTables.size(); i++)
if(allTables[i]->getTableId() == tableId)
return allTables[i];
return NULL;
}
Uint32
RestoreMetaData::getStopGCP() const {
return m_stopGCP;
}
int
RestoreMetaData::loadContent()
{
Uint32 noOfTables = readMetaTableList();
if(noOfTables == 0) {
return 1;
}
for(Uint32 i = 0; i<noOfTables; i++){
if(!readMetaTableDesc()){
return 0;
}
}
if (!markSysTables())
return 0;
if (!fixBlobs())
return 0;
if(!readGCPEntry())
return 0;
if(!readFragmentInfo())
return 0;
return 1;
}
Uint32
RestoreMetaData::readMetaTableList() {
Uint32 sectionInfo[2];
if (buffer_read(&sectionInfo, sizeof(sectionInfo), 1) != 1){
err << "readMetaTableList read header error" << endl;
return 0;
}
sectionInfo[0] = ntohl(sectionInfo[0]);
sectionInfo[1] = ntohl(sectionInfo[1]);
const Uint32 tabCount = sectionInfo[1] - 2;
void *tmp;
Uint32 tabsRead = 0;
while (tabsRead < tabCount){
int count = buffer_get_ptr(&tmp, 4, tabCount - tabsRead);
if(count == 0)
break;
tabsRead += count;
}
if (tabsRead != tabCount){
err << "readMetaTableList read tabCount error, expected count = " << tabCount << ", actual count =" << tabsRead << endl;
return 0;
}
#ifdef ERROR_INSERT
if(m_error_insert == NDB_RESTORE_ERROR_INSERT_SMALL_BUFFER)
{
// clear error insert
m_error_insert = 0;
m_buffer_sz = 64*1024;
}
#endif
return tabCount;
}
bool
RestoreMetaData::readMetaTableDesc() {
Uint32 sectionInfo[3];
// Read section header
Uint32 sz = sizeof(sectionInfo) >> 2;
if (m_fileHeader.NdbVersion < NDBD_ROWID_VERSION ||
isDrop6(m_fileHeader.NdbVersion))
{
sz = 2;
sectionInfo[2] = htonl(DictTabInfo::UserTable);
}
if (buffer_read(&sectionInfo, 4*sz, 1) != 1){
err << "readMetaTableDesc read header error" << endl;
return false;
} // if
sectionInfo[0] = ntohl(sectionInfo[0]);
sectionInfo[1] = ntohl(sectionInfo[1]);
sectionInfo[2] = ntohl(sectionInfo[2]);
assert(sectionInfo[0] == BackupFormat::TABLE_DESCRIPTION);
// Read dictTabInfo buffer
const Uint32 len = (sectionInfo[1] - sz);
void *ptr;
if (buffer_get_ptr(&ptr, 4, len) != len){
err << "readMetaTableDesc read error" << endl;
return false;
} // if
int errcode = 0;
DictObject obj = { sectionInfo[2], 0 };
switch(obj.m_objType){
case DictTabInfo::SystemTable:
case DictTabInfo::UserTable:
case DictTabInfo::UniqueHashIndex:
case DictTabInfo::OrderedIndex:
return parseTableDescriptor((Uint32*)ptr, len);
break;
case DictTabInfo::Tablespace:
{
NdbDictionary::Tablespace * dst = new NdbDictionary::Tablespace;
errcode =
NdbDictInterface::parseFilegroupInfo(NdbTablespaceImpl::getImpl(* dst),
(Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
debug << hex << obj.m_objPtr << " "
<< dec << dst->getObjectId() << " " << dst->getName() << endl;
break;
}
case DictTabInfo::LogfileGroup:
{
NdbDictionary::LogfileGroup * dst = new NdbDictionary::LogfileGroup;
errcode =
NdbDictInterface::parseFilegroupInfo(NdbLogfileGroupImpl::getImpl(* dst),
(Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
debug << hex << obj.m_objPtr << " "
<< dec << dst->getObjectId() << " " << dst->getName() << endl;
break;
}
case DictTabInfo::Datafile:
{
NdbDictionary::Datafile * dst = new NdbDictionary::Datafile;
errcode =
NdbDictInterface::parseFileInfo(NdbDatafileImpl::getImpl(* dst),
(Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
debug << hex << obj.m_objPtr << " "
<< dec << dst->getObjectId() << " " << dst->getPath() << endl;
break;
}
case DictTabInfo::Undofile:
{
NdbDictionary::Undofile * dst = new NdbDictionary::Undofile;
errcode =
NdbDictInterface::parseFileInfo(NdbUndofileImpl::getImpl(* dst),
(Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
debug << hex << obj.m_objPtr << " "
<< dec << dst->getObjectId() << " " << dst->getPath() << endl;
break;
}
case DictTabInfo::HashMap:
{
NdbDictionary::HashMap * dst = new NdbDictionary::HashMap;
errcode =
NdbDictInterface::parseHashMapInfo(NdbHashMapImpl::getImpl(* dst),
(Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
if (!m_hostByteOrder)
{
/**
* Bloddy byte-array, need to twiddle
*/
Vector<Uint32> values;
Uint32 len = dst->getMapLen();
Uint32 zero = 0;
values.fill(len - 1, zero);
dst->getMapValues(values.getBase(), values.size());
for (Uint32 i = 0; i<len; i++)
{
values[i] = Twiddle16(values[i]);
}
dst->setMap(values.getBase(), values.size());
}
m_objects.push(obj, 0); // Put first
return true;
break;
}
case DictTabInfo::ForeignKey:
{
NdbDictionary::ForeignKey * dst = new NdbDictionary::ForeignKey;
errcode =
NdbDictInterface::parseForeignKeyInfo(NdbForeignKeyImpl::getImpl(* dst),
(const Uint32*)ptr, len);
if (errcode)
delete dst;
obj.m_objPtr = dst;
debug << hex << obj.m_objPtr << " "
<< dec << dst->getObjectId() << " " << dst->getName() << endl;
break;
}
default:
if (ga_skip_unknown_objects)
{
info << "Skipping schema object with unknown table type "
<< sectionInfo[2] << endl;
return true;
}
else
{
err << "Unsupported table type!! " << sectionInfo[2] << endl;
return false;
}
}
if (errcode)
{
err << "Unable to parse dict info..."
<< sectionInfo[2] << " " << errcode << endl;
return false;
}
/**
* DD objects need to be sorted...
*/
for(Uint32 i = 0; i<m_objects.size(); i++)
{
switch(sectionInfo[2]){
case DictTabInfo::Tablespace:
if (DictTabInfo::isFile(m_objects[i].m_objType))
{
m_objects.push(obj, i);
goto end;
}
break;
case DictTabInfo::LogfileGroup:
{
if (DictTabInfo::isFile(m_objects[i].m_objType) ||
m_objects[i].m_objType == DictTabInfo::Tablespace)
{
m_objects.push(obj, i);
goto end;
}
break;
}
default:
m_objects.push_back(obj);
goto end;
}
}
m_objects.push_back(obj);
end:
return true;
}
#define OLD_NDB_REP_DB "cluster"
#define OLD_NDB_APPLY_TABLE "apply_status"
#define OLD_NDB_SCHEMA_TABLE "schema"
bool
RestoreMetaData::markSysTables()
{
Uint32 i;
for (i = 0; i < getNoOfTables(); i++) {
TableS* table = allTables[i];
table->m_local_id = i;
const char* tableName = table->getTableName();
if ( // XXX should use type
strcmp(tableName, "SYSTAB_0") == 0 ||
strcmp(tableName, "NDB$EVENTS_0") == 0 ||
strcmp(tableName, "sys/def/SYSTAB_0") == 0 ||
strcmp(tableName, "sys/def/NDB$EVENTS_0") == 0 ||
// index stats tables and indexes
strncmp(tableName, NDB_INDEX_STAT_PREFIX,
sizeof(NDB_INDEX_STAT_PREFIX)-1) == 0 ||
strstr(tableName, "/" NDB_INDEX_STAT_PREFIX) != 0 ||
/*
The following is for old MySQL versions,
before we changed the database name of the tables from
"cluster_replication" -> "cluster" -> "mysql"
*/
strcmp(tableName, "cluster_replication/def/" OLD_NDB_APPLY_TABLE) == 0 ||
strcmp(tableName, OLD_NDB_REP_DB "/def/" OLD_NDB_APPLY_TABLE) == 0 ||
strcmp(tableName, OLD_NDB_REP_DB "/def/" OLD_NDB_SCHEMA_TABLE) == 0 ||
strcmp(tableName, NDB_REP_DB "/def/" NDB_APPLY_TABLE) == 0 ||
strcmp(tableName, NDB_REP_DB "/def/" NDB_SCHEMA_TABLE)== 0 )
{
table->m_isSysTable = true;
if (strcmp(tableName, "SYSTAB_0") == 0 ||
strcmp(tableName, "sys/def/SYSTAB_0") == 0)
table->m_isSYSTAB_0 = true;
}
}
for (i = 0; i < getNoOfTables(); i++) {
TableS* blobTable = allTables[i];
const char* blobTableName = blobTable->getTableName();
// yet another match blob
int cnt, id1, id2;
char buf[256];
cnt = sscanf(blobTableName, "%[^/]/%[^/]/NDB$BLOB_%d_%d",
buf, buf, &id1, &id2);
if (cnt == 4) {
Uint32 j;
for (j = 0; j < getNoOfTables(); j++) {
TableS* table = allTables[j];
if (table->getTableId() == (Uint32) id1) {
if (table->m_isSysTable)
blobTable->m_isSysTable = true;
blobTable->m_main_table = table;
blobTable->m_main_column_id = id2;
break;
}
}
if (j == getNoOfTables()) {
err << "Restore: Bad primary table id in " << blobTableName << endl;
return false;
}
}
}
return true;
}
bool
RestoreMetaData::fixBlobs()
{
Uint32 i;
for (i = 0; i < getNoOfTables(); i++) {
TableS* table = allTables[i];
assert(table->m_dictTable != NULL);
NdbTableImpl& t = NdbTableImpl::getImpl(*table->m_dictTable);
const Uint32 noOfBlobs = t.m_noOfBlobs;
if (noOfBlobs == 0)
continue;
Uint32 n = 0;
Uint32 j;
for (j = 0; n < noOfBlobs; j++) {
NdbColumnImpl* c = t.getColumn(j);
assert(c != NULL);
if (!c->getBlobType())
continue;
// tinyblobs are counted in noOfBlobs...
n++;
if (c->getPartSize() == 0)
continue;
Uint32 k;
TableS* blobTable = NULL;
for (k = 0; k < getNoOfTables(); k++) {
TableS* tmp = allTables[k];
if (tmp->m_main_table == table &&
tmp->m_main_column_id == j) {
blobTable = tmp;
break;
}
}
if (blobTable == NULL)
{
table->m_broken = true;
/* Corrupt backup, has main table, but no blob table */
err << "Table " << table->m_dictTable->getName()
<< " has blob column " << j << " ("
<< c->m_name.c_str()
<< ") with missing parts table in backup."
<< endl;
if (ga_skip_broken_objects)
{
continue;
}
else
{
return false;
}
}
assert(blobTable->m_dictTable != NULL);
NdbTableImpl& bt = NdbTableImpl::getImpl(*blobTable->m_dictTable);
const char* colName = c->m_blobVersion == 1 ? "DATA" : "NDB$DATA";
const NdbColumnImpl* bc = bt.getColumn(colName);
assert(bc != NULL);
assert(c->m_storageType == NDB_STORAGETYPE_MEMORY);
c->m_storageType = bc->m_storageType;
}
}
return true;
}
bool
RestoreMetaData::readGCPEntry() {
BackupFormat::CtlFile::GCPEntry dst;
if(buffer_read(&dst, 1, sizeof(dst)) != sizeof(dst)){
err << "readGCPEntry read error" << endl;
return false;
}
dst.SectionType = ntohl(dst.SectionType);
dst.SectionLength = ntohl(dst.SectionLength);
if(dst.SectionType != BackupFormat::GCP_ENTRY){
err << "readGCPEntry invalid format" << endl;
return false;
}
dst.StartGCP = ntohl(dst.StartGCP);
dst.StopGCP = ntohl(dst.StopGCP);
m_startGCP = dst.StartGCP;
m_stopGCP = dst.StopGCP;
return true;
}
bool
RestoreMetaData::readFragmentInfo()
{
BackupFormat::CtlFile::FragmentInfo fragInfo;
TableS * table = 0;
Uint32 tableId = RNIL;
while (buffer_read(&fragInfo, 4, 2) == 2)
{
fragInfo.SectionType = ntohl(fragInfo.SectionType);
fragInfo.SectionLength = ntohl(fragInfo.SectionLength);
if (fragInfo.SectionType != BackupFormat::FRAGMENT_INFO)
{
err << "readFragmentInfo invalid section type: " <<
fragInfo.SectionType << endl;
return false;
}
if (buffer_read(&fragInfo.TableId, (fragInfo.SectionLength-2)*4, 1) != 1)
{
err << "readFragmentInfo invalid section length: " <<
fragInfo.SectionLength << endl;
return false;
}
fragInfo.TableId = ntohl(fragInfo.TableId);
if (fragInfo.TableId != tableId)
{
tableId = fragInfo.TableId;
table = getTable(tableId);
}
FragmentInfo * tmp = new FragmentInfo;
tmp->fragmentNo = ntohl(fragInfo.FragmentNo);
tmp->noOfRecords = ntohl(fragInfo.NoOfRecordsLow) +
(((Uint64)ntohl(fragInfo.NoOfRecordsHigh)) << 32);
tmp->filePosLow = ntohl(fragInfo.FilePosLow);
tmp->filePosHigh = ntohl(fragInfo.FilePosHigh);
table->m_fragmentInfo.push_back(tmp);
table->m_noOfRecords += tmp->noOfRecords;
}
return true;
}
TableS::TableS(Uint32 version, NdbTableImpl* tableImpl)
: m_dictTable(tableImpl)
{
m_dictTable = tableImpl;
m_noOfNullable = m_nullBitmaskSize = 0;
m_auto_val_attrib = 0;
m_max_auto_val= 0;
m_noOfRecords= 0;
backupVersion = version;
m_isSysTable = false;
m_isSYSTAB_0 = false;
m_broken = false;
m_main_table = NULL;
m_main_column_id = ~(Uint32)0;
for (int i = 0; i < tableImpl->getNoOfColumns(); i++)
createAttr(tableImpl->getColumn(i));
m_staging = false;
m_stagingTable = NULL;
m_stagingFlags = 0;
}
TableS::~TableS()
{
for (Uint32 i= 0; i < allAttributesDesc.size(); i++)
{
if (allAttributesDesc[i]->parameter)
free(allAttributesDesc[i]->parameter);
delete allAttributesDesc[i];
}
}
// Parse dictTabInfo buffer and pushback to to vector storage
bool
RestoreMetaData::parseTableDescriptor(const Uint32 * data, Uint32 len)
{
NdbTableImpl* tableImpl = 0;
int ret = NdbDictInterface::parseTableInfo
(&tableImpl, data, len, false,
isDrop6(m_fileHeader.NdbVersion) ? MAKE_VERSION(5,1,2) :
m_fileHeader.NdbVersion);
if (ret != 0) {
err << "parseTableInfo " << " failed" << endl;
return false;
}
if(tableImpl == 0)
return false;
debug << "parseTableInfo " << tableImpl->getName() << " done" << endl;
TableS * table = new TableS(m_fileHeader.NdbVersion, tableImpl);
if(table == NULL) {
return false;
}
debug << "Parsed table id " << table->getTableId() << endl;
debug << "Parsed table #attr " << table->getNoOfAttributes() << endl;
debug << "Parsed table schema version not used " << endl;
debug << "Pushing table " << table->getTableName() << endl;
debug << " with " << table->getNoOfAttributes() << " attributes" << endl;
allTables.push_back(table);
return true;
}
// Constructor
RestoreDataIterator::RestoreDataIterator(const RestoreMetaData & md, void (* _free_data_callback)())
: BackupFile(_free_data_callback), m_metaData(md)
{
debug << "RestoreDataIterator constructor" << endl;
setDataFile(md, 0);
m_bitfield_storage_len = 8192;
m_bitfield_storage_ptr = (Uint32*)malloc(4*m_bitfield_storage_len);
m_bitfield_storage_curr_ptr = m_bitfield_storage_ptr;
m_row_bitfield_len = 0;
}
RestoreDataIterator::~RestoreDataIterator()
{
free_bitfield_storage();
}
void
RestoreDataIterator::init_bitfield_storage(const NdbDictionary::Table* tab)
{
Uint32 len = 0;
for (Uint32 i = 0; i<(Uint32)tab->getNoOfColumns(); i++)
{
if (tab->getColumn(i)->getType() == NdbDictionary::Column::Bit)
{
len += (tab->getColumn(i)->getLength() + 31) >> 5;
}
}
m_row_bitfield_len = len;
}
void
RestoreDataIterator::reset_bitfield_storage()
{
m_bitfield_storage_curr_ptr = m_bitfield_storage_ptr;
}
void
RestoreDataIterator::free_bitfield_storage()
{
if (m_bitfield_storage_ptr)
free(m_bitfield_storage_ptr);
m_bitfield_storage_ptr = 0;
m_bitfield_storage_curr_ptr = 0;
m_bitfield_storage_len = 0;
}
Uint32
RestoreDataIterator::get_free_bitfield_storage() const
{
return Uint32((m_bitfield_storage_ptr + m_bitfield_storage_len) -
m_bitfield_storage_curr_ptr);
}
Uint32*
RestoreDataIterator::get_bitfield_storage(Uint32 len)
{
Uint32 * currptr = m_bitfield_storage_curr_ptr;
Uint32 * nextptr = currptr + len;
Uint32 * endptr = m_bitfield_storage_ptr + m_bitfield_storage_len;
if (nextptr <= endptr)
{
m_bitfield_storage_curr_ptr = nextptr;
return currptr;
}
abort();
return 0;
}
TupleS & TupleS::operator=(const TupleS& tuple)
{
prepareRecord(*tuple.m_currentTable);
if (allAttrData)
memcpy(allAttrData, tuple.allAttrData, getNoOfAttributes()*sizeof(AttributeData));
return *this;
}
int TupleS::getNoOfAttributes() const {
if (m_currentTable == 0)
return 0;
return m_currentTable->getNoOfAttributes();
}
TableS * TupleS::getTable() const {
return m_currentTable;
}
AttributeDesc * TupleS::getDesc(int i) const {
return m_currentTable->allAttributesDesc[i];
}
AttributeData * TupleS::getData(int i) const{
return &(allAttrData[i]);
}
bool
TupleS::prepareRecord(TableS & tab){
if (allAttrData) {
if (getNoOfAttributes() == tab.getNoOfAttributes())
{
m_currentTable = &tab;
return true;
}
delete [] allAttrData;
m_currentTable= 0;
}
allAttrData = new AttributeData[tab.getNoOfAttributes()];
if (allAttrData == 0)
return false;
m_currentTable = &tab;
return true;
}
static
inline
Uint8*
pad(Uint8* src, Uint32 align, Uint32 bitPos)
{
UintPtr ptr = UintPtr(src);
switch(align){
case DictTabInfo::aBit:
case DictTabInfo::a32Bit:
case DictTabInfo::a64Bit:
case DictTabInfo::a128Bit:
return (Uint8*)(((ptr + 3) & ~(UintPtr)3) + 4 * ((bitPos + 31) >> 5));
charpad:
case DictTabInfo::an8Bit:
case DictTabInfo::a16Bit:
return src + 4 * ((bitPos + 31) >> 5);
default:
#ifdef VM_TRACE
abort();
#endif
goto charpad;
}
}
const TupleS *
RestoreDataIterator::getNextTuple(int & res)
{
if (m_currentTable->backupVersion >= NDBD_RAW_LCP)
{
if (m_row_bitfield_len >= get_free_bitfield_storage())
{
/**
* Informing buffer reader that it does not need to cache
* "old" data here would be clever...
* But I can't find a good/easy way to do this
*/
if (free_data_callback)
(*free_data_callback)();
reset_bitfield_storage();
}
}
Uint32 dataLength = 0;
// Read record length
if (buffer_read(&dataLength, sizeof(dataLength), 1) != 1){
err << "getNextTuple:Error reading length of data part" << endl;
res = -1;
return NULL;
} // if
// Convert length from network byte order
dataLength = ntohl(dataLength);
const Uint32 dataLenBytes = 4 * dataLength;
if (dataLength == 0) {
// Zero length for last tuple
// End of this data fragment
debug << "End of fragment" << endl;
res = 0;
return NULL;
} // if
// Read tuple data
void *_buf_ptr;
if (buffer_get_ptr(&_buf_ptr, 1, dataLenBytes) != dataLenBytes) {
err << "getNextTuple:Read error: " << endl;
res = -1;
return NULL;
}
Uint32 *buf_ptr = (Uint32*)_buf_ptr;
if (m_currentTable->backupVersion >= NDBD_RAW_LCP)
{
res = readTupleData_packed(buf_ptr, dataLength);
}
else
{
res = readTupleData_old(buf_ptr, dataLength);
}
if (res)
{
return NULL;
}
m_count ++;
res = 0;
return &m_tuple;
} // RestoreDataIterator::getNextTuple
TableS *
RestoreDataIterator::getCurrentTable()
{
return m_currentTable;
}
int
RestoreDataIterator::readTupleData_packed(Uint32 *buf_ptr,
Uint32 dataLength)
{
Uint32 * ptr = buf_ptr;
/**
* Unpack READ_PACKED header
*/
Uint32 rp = * ptr;
if(unlikely(!m_hostByteOrder))
rp = Twiddle32(rp);
AttributeHeader ah(rp);
assert(ah.getAttributeId() == AttributeHeader::READ_PACKED);
Uint32 bmlen = ah.getByteSize();
assert((bmlen & 3) == 0);
Uint32 bmlen32 = bmlen / 4;
/**
* Twiddle READ_BACKED header
*/
if (!m_hostByteOrder)
{
for (Uint32 i = 0; i < 1 + bmlen32; i++)
{
ptr[i] = Twiddle32(ptr[i]);
}
}
const NdbDictionary::Table* tab = m_currentTable->m_dictTable;
// All columns should be present...
assert(((tab->getNoOfColumns() + 31) >> 5) <= (int)bmlen32);
/**
* Iterate through attributes...
*/
const Uint32 * bmptr = ptr + 1;
Uint8* src = (Uint8*)(bmptr + bmlen32);
Uint32 bmpos = 0;
Uint32 bitPos = 0;
for (Uint32 i = 0; i < (Uint32)tab->getNoOfColumns(); i++, bmpos++)
{
// All columns should be present
assert(BitmaskImpl::get(bmlen32, bmptr, bmpos));
const NdbColumnImpl & col = NdbColumnImpl::getImpl(* tab->getColumn(i));
AttributeData * attr_data = m_tuple.getData(i);
const AttributeDesc * attr_desc = m_tuple.getDesc(i);
if (col.getNullable())
{
bmpos++;
if (BitmaskImpl::get(bmlen32, bmptr, bmpos))
{
attr_data->null = true;
attr_data->void_value = NULL;
continue;
}
}
attr_data->null = false;
/**
* Handle padding
*/
Uint32 align = col.m_orgAttrSize;
Uint32 attrSize = col.m_attrSize;
Uint32 array = col.m_arraySize;
Uint32 len = col.m_length;
Uint32 sz = attrSize * array;
Uint32 arrayType = col.m_arrayType;
switch(align){
case DictTabInfo::aBit:{ // Bit
src = pad(src, 0, 0);
Uint32* src32 = (Uint32*)src;
Uint32 len32 = (len + 31) >> 5;
Uint32* tmp = get_bitfield_storage(len32);
attr_data->null = false;
attr_data->void_value = tmp;
attr_data->size = 4*len32;
if (m_hostByteOrder)
{
BitmaskImpl::getField(1 + len32, src32, bitPos, len, tmp);
}
else
{
Uint32 ii;
for (ii = 0; ii< (1 + len32); ii++)
src32[ii] = Twiddle32(src32[ii]);
BitmaskImpl::getField(1 + len32, (Uint32*)src, bitPos, len, tmp);
for (ii = 0; ii< (1 + len32); ii++)
src32[ii] = Twiddle32(src32[ii]);
}
src += 4 * ((bitPos + len) >> 5);
bitPos = (bitPos + len) & 31;
goto next;
}
default:
src = pad(src, align, bitPos);
}
switch(arrayType){
case NDB_ARRAYTYPE_FIXED:
break;
case NDB_ARRAYTYPE_SHORT_VAR:
sz = 1 + src[0];
break;
case NDB_ARRAYTYPE_MEDIUM_VAR:
sz = 2 + src[0] + 256 * src[1];
break;
default:
abort();
}
attr_data->void_value = src;
attr_data->size = sz;
if(!Twiddle(attr_desc, attr_data))
{
return -1;
}
/**
* Next
*/
bitPos = 0;
src += sz;
next:
(void)1;
}
return 0;
}
int
RestoreDataIterator::readTupleData_old(Uint32 *buf_ptr,
Uint32 dataLength)
{
Uint32 * ptr = buf_ptr;
ptr += m_currentTable->m_nullBitmaskSize;
Uint32 i;
for(i= 0; i < m_currentTable->m_fixedKeys.size(); i++){
assert(ptr < buf_ptr + dataLength);
const Uint32 attrId = m_currentTable->m_fixedKeys[i]->attrId;
AttributeData * attr_data = m_tuple.getData(attrId);
const AttributeDesc * attr_desc = m_tuple.getDesc(attrId);
const Uint32 sz = attr_desc->getSizeInWords();
attr_data->null = false;
attr_data->void_value = ptr;
attr_data->size = 4*sz;
if(!Twiddle(attr_desc, attr_data))
{
return -1;
}
ptr += sz;
}
for(i = 0; i < m_currentTable->m_fixedAttribs.size(); i++){
assert(ptr < buf_ptr + dataLength);
const Uint32 attrId = m_currentTable->m_fixedAttribs[i]->attrId;
AttributeData * attr_data = m_tuple.getData(attrId);
const AttributeDesc * attr_desc = m_tuple.getDesc(attrId);
const Uint32 sz = attr_desc->getSizeInWords();
attr_data->null = false;
attr_data->void_value = ptr;
attr_data->size = 4*sz;
if(!Twiddle(attr_desc, attr_data))
{
return -1;
}
ptr += sz;
}
// init to NULL
for(i = 0; i < m_currentTable->m_variableAttribs.size(); i++){
const Uint32 attrId = m_currentTable->m_variableAttribs[i]->attrId;
AttributeData * attr_data = m_tuple.getData(attrId);
attr_data->null = true;
attr_data->void_value = NULL;
}
int res;
if (!isDrop6(m_currentTable->backupVersion))
{
if ((res = readVarData(buf_ptr, ptr, dataLength)))
return res;
}
else
{
if ((res = readVarData_drop6(buf_ptr, ptr, dataLength)))
return res;
}
return 0;
}
int
RestoreDataIterator::readVarData(Uint32 *buf_ptr, Uint32 *ptr,
Uint32 dataLength)
{
while (ptr + 2 < buf_ptr + dataLength)
{
typedef BackupFormat::DataFile::VariableData VarData;
VarData * data = (VarData *)ptr;
Uint32 sz = ntohl(data->Sz);
Uint32 attrId = ntohl(data->Id); // column_no
AttributeData * attr_data = m_tuple.getData(attrId);
const AttributeDesc * attr_desc = m_tuple.getDesc(attrId);
// just a reminder - remove when backwards compat implemented
if (m_currentTable->backupVersion < MAKE_VERSION(5,1,3) &&
attr_desc->m_column->getNullable())
{
const Uint32 ind = attr_desc->m_nullBitIndex;
if(BitmaskImpl::get(m_currentTable->m_nullBitmaskSize,
buf_ptr,ind))
{
attr_data->null = true;
attr_data->void_value = NULL;
continue;
}
}
if (m_currentTable->backupVersion < MAKE_VERSION(5,1,3))
{
sz *= 4;
}
attr_data->null = false;
attr_data->void_value = &data->Data[0];
attr_data->size = sz;
//convert the length of blob(v1) and text(v1)
if(!Twiddle(attr_desc, attr_data))
{
return -1;
}
ptr += ((sz + 3) >> 2) + 2;
}
assert(ptr == buf_ptr + dataLength);
return 0;
}
int
RestoreDataIterator::readVarData_drop6(Uint32 *buf_ptr, Uint32 *ptr,
Uint32 dataLength)
{
Uint32 i;
for (i = 0; i < m_currentTable->m_variableAttribs.size(); i++)
{
const Uint32 attrId = m_currentTable->m_variableAttribs[i]->attrId;
AttributeData * attr_data = m_tuple.getData(attrId);
const AttributeDesc * attr_desc = m_tuple.getDesc(attrId);
if(attr_desc->m_column->getNullable())
{
const Uint32 ind = attr_desc->m_nullBitIndex;
if(BitmaskImpl::get(m_currentTable->m_nullBitmaskSize,
buf_ptr,ind))
{
attr_data->null = true;
attr_data->void_value = NULL;
continue;
}
}
assert(ptr < buf_ptr + dataLength);
typedef BackupFormat::DataFile::VariableData VarData;
VarData * data = (VarData *)ptr;
Uint32 sz = ntohl(data->Sz);
assert(ntohl(data->Id) == attrId);
attr_data->null = false;
attr_data->void_value = &data->Data[0];
if (!Twiddle(attr_desc, attr_data))
{
return -1;
}
ptr += (sz + 2);
}
assert(ptr == buf_ptr + dataLength);
return 0;
}
BackupFile::BackupFile(void (* _free_data_callback)())
: free_data_callback(_free_data_callback)
{
memset(&m_file,0,sizeof(m_file));
m_path[0] = 0;
m_fileName[0] = 0;
m_buffer_sz = 64*1024;
m_buffer = malloc(m_buffer_sz);
m_buffer_ptr = m_buffer;
m_buffer_data_left = 0;
m_file_size = 0;
m_file_pos = 0;
m_is_undolog = false;
#ifdef ERROR_INSERT
m_error_insert = 0;
#endif
}
BackupFile::~BackupFile()
{
(void)ndbzclose(&m_file);
if(m_buffer != 0)
free(m_buffer);
}
bool
BackupFile::openFile(){
(void)ndbzclose(&m_file);
m_file_size = 0;
m_file_pos = 0;
info.setLevel(254);
info << "Opening file '" << m_fileName << "'\n";
int r= ndbzopen(&m_file, m_fileName, O_RDONLY);
if(r != 1)
return false;
size_t size;
if (ndbz_file_size(&m_file, &size) == 0)
{
m_file_size = (Uint64)size;
info << "File size " << m_file_size << " bytes\n";
}
else
{
info << "Progress reporting degraded output since fstat failed,"
<< "errno: " << errno << endl;
m_file_size = 0;
}
return true;
}
Uint32 BackupFile::buffer_get_ptr_ahead(void **p_buf_ptr, Uint32 size, Uint32 nmemb)
{
Uint32 sz = size*nmemb;
if (sz > m_buffer_data_left) {
if (free_data_callback)
(*free_data_callback)();
reset_buffers();
if (m_is_undolog)
{
/* move the left data to the end of buffer
*/
size_t r = 0;
int error;
/* move the left data to the end of buffer
* m_buffer_ptr point the end of the left data. buffer_data_start point the start of left data
* m_buffer_data_left is the length of left data.
*/
Uint64 file_left_entry_data = 0;
Uint32 buffer_free_space = m_buffer_sz - m_buffer_data_left;
void * buffer_end = (char *)m_buffer + m_buffer_sz;
void * buffer_data_start = (char *)m_buffer_ptr - m_buffer_data_left;
memmove((char *)buffer_end - m_buffer_data_left, buffer_data_start, m_buffer_data_left);
buffer_data_start = (char *)buffer_end - m_buffer_data_left;
/*
* For undo log file we should read log entris backwards from log file.
* That mean the first entries should start at sizeof(m_fileHeader).
* The end of the last entries should be the end of log file(EOF-1).
* If ther are entries left in log file to read.
* m_file_pos should bigger than sizeof(m_fileHeader).
* If the length of left log entries less than the residual length of buffer,
* we just need to read all the left entries from log file into the buffer.
* and all the left entries in log file should been read into buffer. Or
* If the length of left entries is bigger than the residual length of buffer,
* we should fill the buffer because the current buffer can't contain
all the left log entries, we should read more times.
*
*/
if (m_file_pos > sizeof(m_fileHeader))
{
/*
* We read(consume) data from the end of the buffer.
* If the left data is not enough for next read in buffer,
* we move the residual data to the end of buffer.
* Then we will fill the start of buffer with new data from log file.
* eg. If the buffer length is 10. "+" denotes useless content.
* top end
* Bytes in file abcdefgh0123456789
* Byte in buffer 0123456789 --after first read
* Consume datas... (6789) (2345)
* Bytes in buffer 01++++++++ --after several consumes
* Move data to end ++++++++01
* Bytes in buffer abcdefgh01 --after second read
*/
file_left_entry_data = m_file_pos - sizeof(m_fileHeader);
if (file_left_entry_data <= buffer_free_space)
{
/* All remaining data fits in space available in buffer.
* Read data into buffer before existing data.
*/
// Move to the start of data to be read
ndbzseek(&m_file, sizeof(m_fileHeader), SEEK_SET);
r = ndbzread(&m_file,
(char *)buffer_data_start - file_left_entry_data,
Uint32(file_left_entry_data),
&error);
//move back
ndbzseek(&m_file, sizeof(m_fileHeader), SEEK_SET);
}
else
{
// Fill remaing space at start of buffer with data from file.
ndbzseek(&m_file, m_file_pos-buffer_free_space, SEEK_SET);
r = ndbzread(&m_file, ((char *)m_buffer), buffer_free_space, &error);
ndbzseek(&m_file, m_file_pos-buffer_free_space, SEEK_SET);
}
}
m_file_pos -= r;
m_buffer_data_left += (Uint32)r;
//move to the end of buffer
m_buffer_ptr = buffer_end;
}
else
{
memmove(m_buffer, m_buffer_ptr, m_buffer_data_left);
int error;
Uint32 r = ndbzread(&m_file,
((char *)m_buffer) + m_buffer_data_left,
m_buffer_sz - m_buffer_data_left, &error);
m_file_pos += r;
m_buffer_data_left += r;
m_buffer_ptr = m_buffer;
}
if (sz > m_buffer_data_left)
sz = size * (m_buffer_data_left / size);
}
/*
* For undolog, the m_buffer_ptr points to the end of the left data.
* After we get data from the end of buffer, the data-end move forward.
* So we should move m_buffer_ptr to the right place.
*/
if(m_is_undolog)
*p_buf_ptr = (char *)m_buffer_ptr - sz;
else
*p_buf_ptr = m_buffer_ptr;
return sz/size;
}
Uint32 BackupFile::buffer_get_ptr(void **p_buf_ptr, Uint32 size, Uint32 nmemb)
{
Uint32 r = buffer_get_ptr_ahead(p_buf_ptr, size, nmemb);
if(m_is_undolog)
{
/* we read from end of buffer to start of buffer.
* m_buffer_ptr keep at the end of real data in buffer.
*/
m_buffer_ptr = ((char*)m_buffer_ptr)-(r*size);
m_buffer_data_left -= (r*size);
}
else
{
m_buffer_ptr = ((char*)m_buffer_ptr)+(r*size);
m_buffer_data_left -= (r*size);
}
return r;
}
Uint32 BackupFile::buffer_read_ahead(void *ptr, Uint32 size, Uint32 nmemb)
{
void *buf_ptr;
Uint32 r = buffer_get_ptr_ahead(&buf_ptr, size, nmemb);
memcpy(ptr, buf_ptr, r*size);
return r;
}
Uint32 BackupFile::buffer_read(void *ptr, Uint32 size, Uint32 nmemb)
{
void *buf_ptr;
Uint32 r = buffer_get_ptr(&buf_ptr, size, nmemb);
memcpy(ptr, buf_ptr, r*size);
return r;
}
void
BackupFile::setCtlFile(Uint32 nodeId, Uint32 backupId, const char * path){
m_nodeId = nodeId;
m_expectedFileHeader.BackupId = backupId;
m_expectedFileHeader.FileType = BackupFormat::CTL_FILE;
char name[PATH_MAX]; const Uint32 sz = sizeof(name);
BaseString::snprintf(name, sz, "BACKUP-%u.%d.ctl", backupId, nodeId);
setName(path, name);
}
void
BackupFile::setDataFile(const BackupFile & bf, Uint32 no){
m_nodeId = bf.m_nodeId;
m_expectedFileHeader = bf.m_fileHeader;
m_expectedFileHeader.FileType = BackupFormat::DATA_FILE;
char name[PATH_MAX]; const Uint32 sz = sizeof(name);
BaseString::snprintf(name, sz, "BACKUP-%u-%d.%d.Data",
m_expectedFileHeader.BackupId, no, m_nodeId);
setName(bf.m_path, name);
}
void
BackupFile::setLogFile(const BackupFile & bf, Uint32 no){
m_nodeId = bf.m_nodeId;
m_expectedFileHeader = bf.m_fileHeader;
m_expectedFileHeader.FileType = BackupFormat::LOG_FILE;
char name[PATH_MAX]; const Uint32 sz = sizeof(name);
BaseString::snprintf(name, sz, "BACKUP-%u.%d.log",
m_expectedFileHeader.BackupId, m_nodeId);
setName(bf.m_path, name);
}
void
BackupFile::setName(const char * p, const char * n){
const Uint32 sz = sizeof(m_path);
if(p != 0 && strlen(p) > 0){
if(p[strlen(p)-1] == DIR_SEPARATOR[0]){
BaseString::snprintf(m_path, sz, "%s", p);
} else {
BaseString::snprintf(m_path, sz, "%s%s", p, DIR_SEPARATOR);
}
} else {
m_path[0] = 0;
}
BaseString::snprintf(m_fileName, sizeof(m_fileName), "%s%s", m_path, n);
debug << "Filename = " << m_fileName << endl;
}
bool
BackupFile::readHeader(){
if(!openFile()){
return false;
}
Uint32 oldsz = sizeof(BackupFormat::FileHeader_pre_backup_version);
if(buffer_read(&m_fileHeader, oldsz, 1) != 1){
err << "readDataFileHeader: Error reading header" << endl;
return false;
}
// Convert from network to host byte order for platform compatibility
/*
Due to some optimization going on when using gcc 4.2.3 we
have to read 'backup_version' into tmp variable. If
'm_fileHeader.BackupVersion' is used directly in the if statement
below it will have the wrong value.
*/
Uint32 backup_version = ntohl(m_fileHeader.BackupVersion);
m_fileHeader.BackupVersion = backup_version;
m_fileHeader.SectionType = ntohl(m_fileHeader.SectionType);
m_fileHeader.SectionLength = ntohl(m_fileHeader.SectionLength);
m_fileHeader.FileType = ntohl(m_fileHeader.FileType);
m_fileHeader.BackupId = ntohl(m_fileHeader.BackupId);
m_fileHeader.BackupKey_0 = ntohl(m_fileHeader.BackupKey_0);
m_fileHeader.BackupKey_1 = ntohl(m_fileHeader.BackupKey_1);
if (backup_version >= NDBD_RAW_LCP)
{
if (buffer_read(&m_fileHeader.NdbVersion,
sizeof(m_fileHeader) - oldsz, 1) != 1)
{
err << "readDataFileHeader: Error reading header" << endl;
return false;
}
m_fileHeader.NdbVersion = ntohl(m_fileHeader.NdbVersion);
m_fileHeader.MySQLVersion = ntohl(m_fileHeader.MySQLVersion);
}
else
{
m_fileHeader.NdbVersion = m_fileHeader.BackupVersion;
m_fileHeader.MySQLVersion = 0;
}
debug << "FileHeader: " << m_fileHeader.Magic << " " <<
m_fileHeader.BackupVersion << " " <<
m_fileHeader.SectionType << " " <<
m_fileHeader.SectionLength << " " <<
m_fileHeader.FileType << " " <<
m_fileHeader.BackupId << " " <<
m_fileHeader.BackupKey_0 << " " <<
m_fileHeader.BackupKey_1 << " " <<
m_fileHeader.ByteOrder << endl;
debug << "ByteOrder is " << m_fileHeader.ByteOrder << endl;
debug << "magicByteOrder is " << magicByteOrder << endl;
if (m_fileHeader.FileType != m_expectedFileHeader.FileType &&
!(m_expectedFileHeader.FileType == BackupFormat::LOG_FILE &&
m_fileHeader.FileType == BackupFormat::UNDO_FILE)){
// UNDO_FILE will do in case where we expect LOG_FILE
abort();
}
if(m_fileHeader.FileType == BackupFormat::UNDO_FILE){
m_is_undolog = true;
/* move pointer to end of data part.
move 4 bytes from the end of file
because footer contain 4 bytes 0 at the end of file.
we discard the remain data stored in m_buffer.
*/
size_t size;
if (ndbz_file_size(&m_file, &size) == 0)
m_file_size = (Uint64)size;
ndbzseek(&m_file, 4, SEEK_END);
m_file_pos = m_file_size - 4;
m_buffer_data_left = 0;
m_buffer_ptr = m_buffer;
}
// Check for BackupFormat::FileHeader::ByteOrder if swapping is needed
if (m_fileHeader.ByteOrder == magicByteOrder) {
m_hostByteOrder = true;
} else if (m_fileHeader.ByteOrder == swappedMagicByteOrder){
m_hostByteOrder = false;
} else {
abort();
}
return true;
} // BackupFile::readHeader
bool
BackupFile::validateFooter(){
return true;
}
#ifdef ERROR_INSERT
void BackupFile::error_insert(unsigned int code)
{
if(code == NDB_RESTORE_ERROR_INSERT_SMALL_BUFFER)
{
// Reduce size of buffer to test buffer overflow
// handling. The buffer must still be large enough to
// accommodate the file header.
m_buffer_sz = 256;
m_error_insert = NDB_RESTORE_ERROR_INSERT_SMALL_BUFFER;
}
}
#endif
bool RestoreDataIterator::readFragmentHeader(int & ret, Uint32 *fragmentId)
{
BackupFormat::DataFile::FragmentHeader Header;
debug << "RestoreDataIterator::getNextFragment" << endl;
while (1)
{
/* read first part of header */
if (buffer_read(&Header, 8, 1) != 1)
{
ret = 0;
return false;
} // if
/* skip if EMPTY_ENTRY */
Header.SectionType = ntohl(Header.SectionType);
Header.SectionLength = ntohl(Header.SectionLength);
if (Header.SectionType == BackupFormat::EMPTY_ENTRY)
{
void *tmp;
if (Header.SectionLength < 2)
{
err << "getFragmentFooter:Error reading fragment footer" << endl;
return false;
}
if (Header.SectionLength > 2)
buffer_get_ptr(&tmp, Header.SectionLength*4-8, 1);
continue;
}
break;
}
/* read rest of header */
if (buffer_read(((char*)&Header)+8, Header.SectionLength*4-8, 1) != 1)
{
ret = 0;
return false;
}
Header.TableId = ntohl(Header.TableId);
Header.FragmentNo = ntohl(Header.FragmentNo);
Header.ChecksumType = ntohl(Header.ChecksumType);
debug << "FragmentHeader: " << Header.SectionType
<< " " << Header.SectionLength
<< " " << Header.TableId
<< " " << Header.FragmentNo
<< " " << Header.ChecksumType << endl;
m_currentTable = m_metaData.getTable(Header.TableId);
if(m_currentTable == 0){
ret = -1;
return false;
}
if(!m_tuple.prepareRecord(*m_currentTable))
{
ret =-1;
return false;
}
init_bitfield_storage(m_currentTable->m_dictTable);
info.setLevel(254);
info << "_____________________________________________________" << endl
<< "Processing data in table: " << m_currentTable->getTableName()
<< "(" << Header.TableId << ") fragment "
<< Header.FragmentNo << endl;
m_count = 0;
ret = 0;
*fragmentId = Header.FragmentNo;
return true;
} // RestoreDataIterator::getNextFragment
bool
RestoreDataIterator::validateFragmentFooter() {
BackupFormat::DataFile::FragmentFooter footer;
if (buffer_read(&footer, sizeof(footer), 1) != 1){
err << "getFragmentFooter:Error reading fragment footer" << endl;
return false;
}
// TODO: Handle footer, nothing yet
footer.SectionType = ntohl(footer.SectionType);
footer.SectionLength = ntohl(footer.SectionLength);
footer.TableId = ntohl(footer.TableId);
footer.FragmentNo = ntohl(footer.FragmentNo);
footer.NoOfRecords = ntohl(footer.NoOfRecords);
footer.Checksum = ntohl(footer.Checksum);
assert(m_count == footer.NoOfRecords);
return true;
} // RestoreDataIterator::getFragmentFooter
AttributeDesc::AttributeDesc(NdbDictionary::Column *c)
: m_column(c), truncation_detected(false)
{
size = 8*NdbColumnImpl::getImpl(* c).m_attrSize;
arraySize = NdbColumnImpl::getImpl(* c).m_arraySize;
staging = false;
parameterSz = 0;
}
void TableS::createAttr(NdbDictionary::Column *column)
{
AttributeDesc * d = new AttributeDesc(column);
if(d == NULL) {
ndbout_c("Restore: Failed to allocate memory");
abort();
}
d->attrId = allAttributesDesc.size();
d->convertFunc = NULL;
d->parameter = NULL;
d->m_exclude = false;
allAttributesDesc.push_back(d);
if (d->m_column->getAutoIncrement())
m_auto_val_attrib = d;
if(d->m_column->getPrimaryKey() && backupVersion <= MAKE_VERSION(4,1,7))
{
m_fixedKeys.push_back(d);
return;
}
if (d->m_column->getArrayType() == NDB_ARRAYTYPE_FIXED &&
! d->m_column->getNullable())
{
m_fixedAttribs.push_back(d);
return;
}
// just a reminder - does not solve backwards compat
if (backupVersion < MAKE_VERSION(5,1,3) || isDrop6(backupVersion))
{
d->m_nullBitIndex = m_noOfNullable;
m_noOfNullable++;
m_nullBitmaskSize = (m_noOfNullable + 31) / 32;
}
m_variableAttribs.push_back(d);
} // TableS::createAttr
bool
TableS::get_auto_data(const TupleS & tuple, Uint32 * syskey, Uint64 * nextid) const
{
/*
Read current (highest) auto_increment value for
a table. Currently there can only be one per table.
The values are stored in sustable SYSTAB_0 as
{SYSKEY,NEXTID} values where SYSKEY (32-bit) is
the table_id and NEXTID (64-bit) is the next auto_increment
value in the sequence (note though that sequences of
values can have been fetched and that are cached in NdbAPI).
SYSTAB_0 can contain other data so we need to check that
the found SYSKEY value is a valid table_id (< 0x10000000).
*/
AttributeData * attr_data = tuple.getData(0);
AttributeDesc * attr_desc = tuple.getDesc(0);
const AttributeS attr1 = {attr_desc, *attr_data};
memcpy(syskey ,attr1.Data.u_int32_value, sizeof(Uint32));
attr_data = tuple.getData(1);
attr_desc = tuple.getDesc(1);
const AttributeS attr2 = {attr_desc, *attr_data};
memcpy(nextid, attr2.Data.u_int64_value, sizeof(Uint64));
if (*syskey < 0x10000000)
{
return true;
}
return false;
};
Uint16 Twiddle16(Uint16 in)
{
Uint16 retVal = 0;
retVal = ((in & 0xFF00) >> 8) |
((in & 0x00FF) << 8);
return(retVal);
} // Twiddle16
Uint32 Twiddle32(Uint32 in)
{
Uint32 retVal = 0;
retVal = ((in & 0x000000FF) << 24) |
((in & 0x0000FF00) << 8) |
((in & 0x00FF0000) >> 8) |
((in & 0xFF000000) >> 24);
return(retVal);
} // Twiddle32
Uint64 Twiddle64(Uint64 in)
{
Uint64 retVal = 0;
retVal =
((in & (Uint64)0x00000000000000FFLL) << 56) |
((in & (Uint64)0x000000000000FF00LL) << 40) |
((in & (Uint64)0x0000000000FF0000LL) << 24) |
((in & (Uint64)0x00000000FF000000LL) << 8) |
((in & (Uint64)0x000000FF00000000LL) >> 8) |
((in & (Uint64)0x0000FF0000000000LL) >> 24) |
((in & (Uint64)0x00FF000000000000LL) >> 40) |
((in & (Uint64)0xFF00000000000000LL) >> 56);
return(retVal);
} // Twiddle64
RestoreLogIterator::RestoreLogIterator(const RestoreMetaData & md)
: m_metaData(md)
{
debug << "RestoreLog constructor" << endl;
setLogFile(md, 0);
m_count = 0;
m_last_gci = 0;
}
const LogEntry *
RestoreLogIterator::getNextLogEntry(int & res) {
// Read record length
const Uint32 stopGCP = m_metaData.getStopGCP();
Uint32 tableId;
Uint32 triggerEvent;
Uint32 frag_id;
Uint32 *attr_data;
Uint32 attr_data_len;
do {
Uint32 len;
Uint32 *logEntryPtr;
if(m_is_undolog){
int read_result = 0;
read_result = buffer_read(&len, sizeof(Uint32), 1);
//no more log data to read
if (read_result == 0 ) {
res = 0;
return 0;
}
if (read_result != 1) {
res= -1;
return 0;
}
}
else{
if (buffer_read_ahead(&len, sizeof(Uint32), 1) != 1){
res= -1;
return 0;
}
}
len= ntohl(len);
Uint32 data_len = sizeof(Uint32) + len*4;
if (buffer_get_ptr((void **)(&logEntryPtr), 1, data_len) != data_len) {
res= -2;
return 0;
}
if(len == 0){
res= 0;
return 0;
}
if (unlikely(m_metaData.getFileHeader().NdbVersion < NDBD_FRAGID_VERSION ||
isDrop6(m_metaData.getFileHeader().NdbVersion)))
{
/*
FragId was introduced in LogEntry in version
5.1.6
We set FragId to 0 in older versions (these versions
do not support restore of user defined partitioned
tables.
*/
typedef BackupFormat::LogFile::LogEntry_no_fragid LogE_no_fragid;
LogE_no_fragid * logE_no_fragid= (LogE_no_fragid *)logEntryPtr;
tableId= ntohl(logE_no_fragid->TableId);
triggerEvent= ntohl(logE_no_fragid->TriggerEvent);
frag_id= 0;
attr_data= &logE_no_fragid->Data[0];
attr_data_len= len - ((offsetof(LogE_no_fragid, Data) >> 2) - 1);
}
else /* normal case */
{
typedef BackupFormat::LogFile::LogEntry LogE;
LogE * logE= (LogE *)logEntryPtr;
tableId= ntohl(logE->TableId);
triggerEvent= ntohl(logE->TriggerEvent);
frag_id= ntohl(logE->FragId);
attr_data= &logE->Data[0];
attr_data_len= len - ((offsetof(LogE, Data) >> 2) - 1);
}
const bool hasGcp= (triggerEvent & 0x10000) != 0;
triggerEvent &= 0xFFFF;
if(hasGcp){
// last attr_data is gci info
attr_data_len--;
m_last_gci = ntohl(*(attr_data + attr_data_len));
}
} while(m_last_gci > stopGCP + 1);
m_logEntry.m_table = m_metaData.getTable(tableId);
/* We should 'invert' the operation type when we restore an Undo log.
* To undo an insert operation, a delete is required.
* To undo a delete operation, an insert is required.
* The backup have collected 'before values' for undoing 'delete+update' to make this work.
* To undo insert, we only need primary key.
*/
switch(triggerEvent){
case TriggerEvent::TE_INSERT:
if(m_is_undolog)
m_logEntry.m_type = LogEntry::LE_DELETE;
else
m_logEntry.m_type = LogEntry::LE_INSERT;
break;
case TriggerEvent::TE_UPDATE:
m_logEntry.m_type = LogEntry::LE_UPDATE;
break;
case TriggerEvent::TE_DELETE:
if(m_is_undolog)
m_logEntry.m_type = LogEntry::LE_INSERT;
else
m_logEntry.m_type = LogEntry::LE_DELETE;
break;
default:
res = -1;
return NULL;
}
const TableS * tab = m_logEntry.m_table;
m_logEntry.clear();
AttributeHeader * ah = (AttributeHeader *)attr_data;
AttributeHeader *end = (AttributeHeader *)(attr_data + attr_data_len);
AttributeS * attr;
m_logEntry.m_frag_id = frag_id;
while(ah < end){
attr = m_logEntry.add_attr();
if(attr == NULL) {
ndbout_c("Restore: Failed to allocate memory");
res = -1;
return 0;
}
if(unlikely(!m_hostByteOrder))
*(Uint32*)ah = Twiddle32(*(Uint32*)ah);
attr->Desc = tab->getAttributeDesc(ah->getAttributeId());
assert(attr->Desc != 0);
const Uint32 sz = ah->getByteSize();
if(sz == 0){
attr->Data.null = true;
attr->Data.void_value = NULL;
attr->Data.size = 0;
} else {
attr->Data.null = false;
attr->Data.void_value = ah->getDataPtr();
attr->Data.size = sz;
Twiddle(attr->Desc, &(attr->Data));
}
ah = ah->getNext();
}
m_count ++;
res = 0;
return &m_logEntry;
}
NdbOut &
operator<<(NdbOut& ndbout, const AttributeS& attr){
const AttributeData & data = attr.Data;
const AttributeDesc & desc = *(attr.Desc);
if (data.null)
{
ndbout << g_ndbrecord_print_format.null_string;
return ndbout;
}
NdbRecAttr tmprec(0);
tmprec.setup(desc.m_column, 0);
assert(desc.size % 8 == 0);
#ifndef NDEBUG
const Uint32 length = (desc.size)/8 * (desc.arraySize);
#endif
assert((desc.m_column->getArrayType() == NdbDictionary::Column::ArrayTypeFixed)
? (data.size == length)
: (data.size <= length));
tmprec.receive_data((Uint32*)data.void_value, data.size);
ndbrecattr_print_formatted(ndbout, tmprec, g_ndbrecord_print_format);
return ndbout;
}
// Print tuple data
NdbOut&
operator<<(NdbOut& ndbout, const TupleS& tuple)
{
for (int i = 0; i < tuple.getNoOfAttributes(); i++)
{
if (i > 0)
ndbout << g_ndbrecord_print_format.fields_terminated_by;
AttributeData * attr_data = tuple.getData(i);
AttributeDesc * attr_desc = tuple.getDesc(i);
const AttributeS attr = {attr_desc, *attr_data};
debug << i << " " << attr_desc->m_column->getName();
ndbout << attr;
} // for
return ndbout;
}
// Print tuple data
NdbOut&
operator<<(NdbOut& ndbout, const LogEntry& logE)
{
switch(logE.m_type)
{
case LogEntry::LE_INSERT:
ndbout << "INSERT " << logE.m_table->getTableName() << " ";
break;
case LogEntry::LE_DELETE:
ndbout << "DELETE " << logE.m_table->getTableName() << " ";
break;
case LogEntry::LE_UPDATE:
ndbout << "UPDATE " << logE.m_table->getTableName() << " ";
break;
default:
ndbout << "Unknown log entry type (not insert, delete or update)" ;
}
for (Uint32 i= 0; i < logE.size();i++)
{
const AttributeS * attr = logE[i];
ndbout << attr->Desc->m_column->getName() << "=";
ndbout << (* attr);
if (i < (logE.size() - 1))
ndbout << ", ";
}
return ndbout;
}
#include <NDBT.hpp>
NdbOut &
operator<<(NdbOut& ndbout, const TableS & table){
ndbout << (* (NDBT_Table*)table.m_dictTable) << endl;
return ndbout;
}
template class Vector<TableS*>;
template class Vector<AttributeS*>;
template class Vector<AttributeDesc*>;
template class Vector<FragmentInfo*>;
template class Vector<DictObject>;