162 lines
4.3 KiB
C++

/* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
// First include (the generated) my_config.h, to get correct platform defines.
#include "my_config.h"
#include <gtest/gtest.h>
#include "my_global.h"
#include <algorithm>
#include <vector>
namespace alignment_unittest {
/*
Testing performance penalty of accessing un-aligned data.
Seems to about 2% on my desktop machine.
*/
class AlignmentTest : public ::testing::Test
{
protected:
// Increase num_iterations for actual benchmarking!
static const int num_iterations= 1;
static const int num_records= 100 * 1000;
static int* aligned_data;
static uchar* unaligned_data;
static void SetUpTestCase()
{
aligned_data= new int[num_records];
unaligned_data= new uchar[(num_records + 1) * sizeof(int)];
for (int ix= 0; ix < num_records; ++ix)
{
aligned_data[ix]= ix / 10;
}
std::random_shuffle(aligned_data, aligned_data + num_records);
memcpy(unaligned_data + 1, aligned_data, num_records * sizeof(int));
}
static void TearDownTestCase()
{
delete[] aligned_data;
delete[] unaligned_data;
}
virtual void SetUp()
{
aligned_keys= new uchar* [num_records];
unaligned_keys= new uchar* [num_records];
for (int ix= 0; ix < num_records; ++ix)
{
aligned_keys[ix]=
static_cast<uchar*>(static_cast<void*>(&aligned_data[ix]));
unaligned_keys[ix]=
&unaligned_data[1 + (ix * sizeof(int))];
}
}
virtual void TearDown()
{
delete[] aligned_keys;
delete[] unaligned_keys;
}
uchar **aligned_keys;
uchar **unaligned_keys;
};
int* AlignmentTest::aligned_data;
uchar* AlignmentTest::unaligned_data;
// A copy of the generic, byte-by-byte getter.
#define sint4korrgeneric(A) (int32) (((int32) ((uchar) (A)[0])) +\
(((int32) ((uchar) (A)[1]) << 8)) + \
(((int32) ((uchar) (A)[2]) << 16)) + \
(((int32) ((int16) (A)[3]) << 24)))
class Mem_compare_uchar_int :
public std::binary_function<const uchar*, const uchar*, bool>
{
public:
bool operator() (const uchar *s1, const uchar *s2)
{
return *(int*) s1 < *(int*) s2;
}
};
class Mem_compare_sint4 :
public std::binary_function<const uchar*, const uchar*, bool>
{
public:
bool operator() (const uchar *s1, const uchar *s2)
{
return sint4korr(s1) < sint4korr(s2);
}
};
class Mem_compare_sint4_generic :
public std::binary_function<const uchar*, const uchar*, bool>
{
public:
bool operator() (const uchar *s1, const uchar *s2)
{
return sint4korrgeneric(s1) < sint4korrgeneric(s2);
}
};
#if defined(__i386__) || defined(__x86_64__) || defined(_WIN32)
TEST_F(AlignmentTest, AlignedSort)
{
for (int ix= 0; ix < num_iterations; ++ix)
{
std::vector<uchar*> keys(aligned_keys, aligned_keys + num_records);
std::sort(keys.begin(), keys.end(), Mem_compare_uchar_int());
}
}
TEST_F(AlignmentTest, UnAlignedSort)
{
for (int ix= 0; ix < num_iterations; ++ix)
{
std::vector<uchar*> keys(unaligned_keys, unaligned_keys + num_records);
std::sort(keys.begin(), keys.end(), Mem_compare_uchar_int());
}
}
TEST_F(AlignmentTest, Sint4Sort)
{
for (int ix= 0; ix < num_iterations; ++ix)
{
std::vector<uchar*> keys(unaligned_keys, unaligned_keys + num_records);
std::sort(keys.begin(), keys.end(), Mem_compare_sint4());
}
}
TEST_F(AlignmentTest, Sint4SortGeneric)
{
for (int ix= 0; ix < num_iterations; ++ix)
{
std::vector<uchar*> keys(unaligned_keys, unaligned_keys + num_records);
std::sort(keys.begin(), keys.end(), Mem_compare_sint4_generic());
}
}
#endif
}