python-scikit-learn/backport-CVE-2024-5206.patch
2024-06-17 10:45:08 +08:00

208 lines
7.8 KiB
Diff

From 70ca21f106b603b611da73012c9ade7cd8e438b8 Mon Sep 17 00:00:00 2001
From: Olivier Grisel <olivier.grisel@ensta.org>
Date: Mon, 22 Apr 2024 15:10:46 +0200
Subject: [PATCH] FIX remove the computed stop_words_ attribute of text
vectorizer (#28823)
Origin:
https://github.com/scikit-learn/scikit-learn/commit/70ca21f106b603b611da73012c9ade7cd8e438b8
---
sklearn/feature_extraction/tests/test_text.py | 42 -------------------
sklearn/feature_extraction/text.py | 36 +---------------
2 files changed, 2 insertions(+), 76 deletions(-)
diff --git a/sklearn/feature_extraction/tests/test_text.py b/sklearn/feature_extraction/tests/test_text.py
index b46958c..ac55021 100644
--- a/sklearn/feature_extraction/tests/test_text.py
+++ b/sklearn/feature_extraction/tests/test_text.py
@@ -764,21 +764,11 @@ def test_feature_names(get_names):
@pytest.mark.parametrize("Vectorizer", (CountVectorizer, TfidfVectorizer))
def test_vectorizer_max_features(Vectorizer):
expected_vocabulary = {"burger", "beer", "salad", "pizza"}
- expected_stop_words = {
- "celeri",
- "tomato",
- "copyright",
- "coke",
- "sparkling",
- "water",
- "the",
- }
# test bounded number of extracted features
vectorizer = Vectorizer(max_df=0.6, max_features=4)
vectorizer.fit(ALL_FOOD_DOCS)
assert set(vectorizer.vocabulary_) == expected_vocabulary
- assert vectorizer.stop_words_ == expected_stop_words
# TODO: Remove in 1.2 when get_feature_names is removed.
@@ -816,21 +806,16 @@ def test_vectorizer_max_df():
vect.fit(test_data)
assert "a" in vect.vocabulary_.keys()
assert len(vect.vocabulary_.keys()) == 6
- assert len(vect.stop_words_) == 0
vect.max_df = 0.5 # 0.5 * 3 documents -> max_doc_count == 1.5
vect.fit(test_data)
assert "a" not in vect.vocabulary_.keys() # {ae} ignored
assert len(vect.vocabulary_.keys()) == 4 # {bcdt} remain
- assert "a" in vect.stop_words_
- assert len(vect.stop_words_) == 2
vect.max_df = 1
vect.fit(test_data)
assert "a" not in vect.vocabulary_.keys() # {ae} ignored
assert len(vect.vocabulary_.keys()) == 4 # {bcdt} remain
- assert "a" in vect.stop_words_
- assert len(vect.stop_words_) == 2
def test_vectorizer_min_df():
@@ -839,21 +824,16 @@ def test_vectorizer_min_df():
vect.fit(test_data)
assert "a" in vect.vocabulary_.keys()
assert len(vect.vocabulary_.keys()) == 6
- assert len(vect.stop_words_) == 0
vect.min_df = 2
vect.fit(test_data)
assert "c" not in vect.vocabulary_.keys() # {bcdt} ignored
assert len(vect.vocabulary_.keys()) == 2 # {ae} remain
- assert "c" in vect.stop_words_
- assert len(vect.stop_words_) == 4
vect.min_df = 0.8 # 0.8 * 3 documents -> min_doc_count == 2.4
vect.fit(test_data)
assert "c" not in vect.vocabulary_.keys() # {bcdet} ignored
assert len(vect.vocabulary_.keys()) == 1 # {a} remains
- assert "c" in vect.stop_words_
- assert len(vect.stop_words_) == 5
@pytest.mark.parametrize(
@@ -1195,28 +1175,6 @@ def test_countvectorizer_vocab_dicts_when_pickling(get_names):
assert_array_equal(getattr(cv, get_names)(), getattr(unpickled_cv, get_names)())
-def test_stop_words_removal():
- # Ensure that deleting the stop_words_ attribute doesn't affect transform
-
- fitted_vectorizers = (
- TfidfVectorizer().fit(JUNK_FOOD_DOCS),
- CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS),
- CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS),
- )
-
- for vect in fitted_vectorizers:
- vect_transform = vect.transform(JUNK_FOOD_DOCS).toarray()
-
- vect.stop_words_ = None
- stop_None_transform = vect.transform(JUNK_FOOD_DOCS).toarray()
-
- delattr(vect, "stop_words_")
- stop_del_transform = vect.transform(JUNK_FOOD_DOCS).toarray()
-
- assert_array_equal(stop_None_transform, vect_transform)
- assert_array_equal(stop_del_transform, vect_transform)
-
-
def test_pickling_transformer():
X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS)
orig = TfidfTransformer().fit(X)
diff --git a/sklearn/feature_extraction/text.py b/sklearn/feature_extraction/text.py
index b565aea..2735ded 100644
--- a/sklearn/feature_extraction/text.py
+++ b/sklearn/feature_extraction/text.py
@@ -1040,15 +1040,6 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
True if a fixed vocabulary of term to indices mapping
is provided by the user.
- stop_words_ : set
- Terms that were ignored because they either:
-
- - occurred in too many documents (`max_df`)
- - occurred in too few documents (`min_df`)
- - were cut off by feature selection (`max_features`).
-
- This is only available if no vocabulary was given.
-
See Also
--------
HashingVectorizer : Convert a collection of text documents to a
@@ -1057,12 +1048,6 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
TfidfVectorizer : Convert a collection of raw documents to a matrix
of TF-IDF features.
- Notes
- -----
- The ``stop_words_`` attribute can get large and increase the model size
- when pickling. This attribute is provided only for introspection and can
- be safely removed using delattr or set to None before pickling.
-
Examples
--------
>>> from sklearn.feature_extraction.text import CountVectorizer
@@ -1175,19 +1160,17 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
mask = new_mask
new_indices = np.cumsum(mask) - 1 # maps old indices to new
- removed_terms = set()
for term, old_index in list(vocabulary.items()):
if mask[old_index]:
vocabulary[term] = new_indices[old_index]
else:
del vocabulary[term]
- removed_terms.add(term)
kept_indices = np.where(mask)[0]
if len(kept_indices) == 0:
raise ValueError(
"After pruning, no terms remain. Try a lower min_df or a higher max_df."
)
- return X[:, kept_indices], removed_terms
+ return X[:, kept_indices]
def _count_vocab(self, raw_documents, fixed_vocab):
"""Create sparse feature matrix, and vocabulary where fixed_vocab=False"""
@@ -1352,7 +1335,7 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
raise ValueError("max_df corresponds to < documents than min_df")
if max_features is not None:
X = self._sort_features(X, vocabulary)
- X, self.stop_words_ = self._limit_features(
+ X = self._limit_features(
X, vocabulary, max_doc_count, min_doc_count, max_features
)
if max_features is None:
@@ -1882,15 +1865,6 @@ class TfidfVectorizer(CountVectorizer):
The inverse document frequency (IDF) vector; only defined
if ``use_idf`` is True.
- stop_words_ : set
- Terms that were ignored because they either:
-
- - occurred in too many documents (`max_df`)
- - occurred in too few documents (`min_df`)
- - were cut off by feature selection (`max_features`).
-
- This is only available if no vocabulary was given.
-
See Also
--------
CountVectorizer : Transforms text into a sparse matrix of n-gram counts.
@@ -1898,12 +1872,6 @@ class TfidfVectorizer(CountVectorizer):
TfidfTransformer : Performs the TF-IDF transformation from a provided
matrix of counts.
- Notes
- -----
- The ``stop_words_`` attribute can get large and increase the model size
- when pickling. This attribute is provided only for introspection and can
- be safely removed using delattr or set to None before pickling.
-
Examples
--------
>>> from sklearn.feature_extraction.text import TfidfVectorizer
--
2.33.0